-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtemplate.py
49 lines (43 loc) · 1.53 KB
/
template.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
'''
import cv2
import numpy as np
img_bgr = cv2. imread('image/tem.png')
img_gray = cv2.cvtColor(img_bgr,cv2.COLOR_BGR2GRAY)
template = cv2.imread('image/1.jpg',0)
w,h = template.shape[::-1]
res = cv2.matchTemplate(img_gray,template,cv2.TM_CCOEFF_NORMED)
threshold = 0.5
loc = np.where(res >= threshold)
for pt in zip(*loc[::-1]):
cv2.rectangle(img_bgr,pt,(pt[0]+w,pt[1]+h),(0,255,255),2)
cv2.imshow('detected',img_bgr)
'''
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
img = cv.imread('input.jpg',0)
img2 = img.copy()
template = cv.imread('temp.jpg',0)
w, h = template.shape[::-1]
# All the 6 methods for comparison in a list
methods = ['cv.TM_CCOEFF', 'cv.TM_CCOEFF_NORMED', 'cv.TM_CCORR',
'cv.TM_CCORR_NORMED', 'cv.TM_SQDIFF', 'cv.TM_SQDIFF_NORMED']
for meth in methods:
img = img2.copy()
method = eval(meth)
# Apply template Matching
res = cv.matchTemplate(img,template,method)
min_val, max_val, min_loc, max_loc = cv.minMaxLoc(res)
# If the method is TM_SQDIFF or TM_SQDIFF_NORMED, take minimum
if method in [cv.TM_SQDIFF, cv.TM_SQDIFF_NORMED]:
top_left = min_loc
else:
top_left = max_loc
bottom_right = (top_left[0] + w, top_left[1] + h)
cv.rectangle(img,top_left, bottom_right, 255, 2)
plt.subplot(121),plt.imshow(res,cmap = 'gray')
plt.title('Matching Result'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(img,cmap = 'gray')
plt.title('Detected Point'), plt.xticks([]), plt.yticks([])
plt.suptitle(meth)
plt.show()