@@ -11,21 +11,21 @@ CTRV model is a model that assumes constant turn rate and velocity magnitude.
11
11
- state transition equation
12
12
13
13
$$
14
- \begin{align* }
15
- x_{k+1} &= x_k + v_{x_k } \cos(\psi_k) \cdot dt \\
16
- y_{k+1} &= y_k + v_{x_k } \sin(\psi_k) \cdot dt \\
17
- \psi_{k+1} &= \psi_k + \dot{\psi}_k \cdot dt \\
18
- v_{x_{ k+1}} & = v_{x_k } \\
19
- \dot{\psi}_ {k+1} & = \dot{\psi}_k \\
20
- \end{align* }
14
+ \begin{aligned }
15
+ x_{k+1} & = x_{k} + v_{k } \cos(\psi_k) \cdot {d t} \\
16
+ y_{k+1} & = y_{k} + v_{k } \sin(\psi_k) \cdot {d t} \\
17
+ \psi_{k+1} & = \psi_k + \dot\psi_{k} \cdot {d t} \\
18
+ v_{k+1} & = v_{k } \\
19
+ \dot\psi_ {k+1} & = \dot\psi_{k} \\
20
+ \end{aligned }
21
21
$$
22
22
23
23
- jacobian
24
24
25
25
$$
26
26
A = \begin{bmatrix}
27
- 1 & 0 & -v_x \sin(\psi) \cdot dt & \cos(\psi) \cdot dt & 0 \\
28
- 0 & 1 & v_x \cos(\psi) \cdot dt & \sin(\psi) \cdot dt & 0 \\
27
+ 1 & 0 & -v \sin(\psi) \cdot dt & \cos(\psi) \cdot dt & 0 \\
28
+ 0 & 1 & v \cos(\psi) \cdot dt & \sin(\psi) \cdot dt & 0 \\
29
29
0 & 0 & 1 & 0 & dt \\
30
30
0 & 0 & 0 & 1 & 0 \\
31
31
0 & 0 & 0 & 0 & 1 \\
@@ -40,17 +40,20 @@ The merit of using this model is that it can prevent unintended yaw rotation whe
40
40
![ kinematic_bicycle_model] ( image/kinematic_bicycle_model.png )
41
41
42
42
- ** state variable**
43
- - pose( $x,y$ ), velocity ( $v $ ), yaw ( $\psi $ ), and slip angle ( $\beta$ )
44
- - $[ x_ {k} , y_ {k} , v _ {k} , \psi _ {k} , \beta_ {k} ] ^\mathrm{T}$
43
+ - pose( $x,y$ ), yaw ( $\psi $ ), velocity ( $v $ ), and slip angle ( $\beta$ )
44
+ - $[ x_ {k}, y_ {k}, \psi _ {k}, v _ {k}, \beta_ {k} ] ^\mathrm{T}$
45
45
- ** Prediction Equation**
46
46
- $dt$: sampling time
47
+ - $w_ {k} = \dot\psi_ {k} = \frac{ v_ {k} \sin \left( \beta_ {k} \right) }{ l_r }$ : angular velocity
47
48
48
49
$$
49
50
\begin{aligned}
50
- x_{k+1} & =x_{k}+v_{k} \cos \left(\psi_{k}+\beta_{k}\right) d t \\
51
- y_{k+1} & =y_{k}+v_{k} \sin \left(\psi_{k}+\beta_{k}\right) d t \\
52
- v_{k+1} & =v_{k} \\
53
- \psi_{k+1} & =\psi_{k}+\frac{v_{k}}{l_{r}} \sin \beta_{k} d t \\
51
+ x_{k+1} & = x_{k} + v_{k} \cos \left( \psi_{k}+\beta_{k} \right) {d t}
52
+ -\frac{1}{2} \left\lbrace w_k v_k \sin \left(\psi_{k}+\beta_{k} \right) \right\rbrace {d t}^2\\
53
+ y_{k+1} & = y_{k} + v_{k} \sin \left( \psi_{k}+\beta_{k} \right) {d t}
54
+ +\frac{1}{2} \left\lbrace w_k v_k \cos \left(\psi_{k}+\beta_{k} \right) \right\rbrace {d t}^2\\
55
+ \psi_{k+1} & =\psi_{k} + w_k {d t} \\
56
+ v_{k+1} & = v_{k} \\
54
57
\beta_{k+1} & =\beta_{k}
55
58
\end{aligned}
56
59
$$
59
62
60
63
$$
61
64
\frac{\partial f}{\partial \mathrm x}=\left[\begin{array}{ccccc}
62
- 1 & 0 & -v \sin (\psi+\beta) d t & v \cos (\psi+\beta) & -v \sin (\psi+\beta) d t \\
63
- 0 & 1 & v \cos (\psi+\beta) d t & v \sin (\psi+\beta) & v \cos (\psi+\beta) d t \\
64
- 0 & 0 & 1 & \frac{1}{l_r} \sin \beta d t & \frac{v}{l_r} \cos \beta d t \\
65
+ 1 & 0
66
+ & v \cos (\psi+\beta) {d t} - \frac{1}{2} \left\lbrace w v \cos \left( \psi+\beta \right) \right\rbrace {d t}^2
67
+ & \sin (\psi+\beta) {d t} - \left\lbrace w \sin \left( \psi+\beta \right) \right\rbrace {d t}^2
68
+ & -v \sin (\psi+\beta) {d t} - \frac{v^2}{2l_r} \left\lbrace \cos(\beta)\sin(\psi+\beta)+\sin(\beta)\cos(\psi+\beta) \right\rbrace {d t}^2 \\
69
+ 0 & 1
70
+ & v \sin (\psi+\beta) {d t} - \frac{1}{2} \left\lbrace w v \sin \left( \psi+\beta \right) \right\rbrace {d t}^2
71
+ & \cos (\psi+\beta) {d t} + \left\lbrace w \cos \left( \psi+\beta \right) \right\rbrace {d t}^2
72
+ & v \cos (\psi+\beta) {d t} + \frac{v^2}{2l_r} \left\lbrace \cos(\beta)\cos(\psi+\beta)-\sin(\beta)\sin(\psi+\beta) \right\rbrace {d t}^2 \\
73
+ 0 & 0 & 1 & \frac{1}{l_r} \sin \beta {d t} & \frac{v}{l_r} \cos \beta d t \\
65
74
0 & 0 & 0 & 1 & 0 \\
66
75
0 & 0 & 0 & 0 & 1
67
76
\end{array}\right]
0 commit comments