forked from autowarefoundation/autoware.universe
-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathutils.cpp
567 lines (502 loc) · 20.3 KB
/
utils.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
// Copyright 2020 Tier IV, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "obstacle_avoidance_planner/utils.hpp"
#include "obstacle_avoidance_planner/eb_path_optimizer.hpp"
#include "obstacle_avoidance_planner/mpt_optimizer.hpp"
#include "tf2/utils.h"
#include "autoware_auto_planning_msgs/msg/path_point.hpp"
#include "autoware_auto_planning_msgs/msg/trajectory_point.hpp"
#include "geometry_msgs/msg/point32.hpp"
#include "geometry_msgs/msg/pose.hpp"
#include "nav_msgs/msg/map_meta_data.hpp"
#include "boost/optional.hpp"
#include <algorithm>
#include <limits>
#include <memory>
#include <stack>
#include <vector>
namespace
{
std::vector<double> convertEulerAngleToMonotonic(const std::vector<double> & angle)
{
if (angle.empty()) {
return std::vector<double>{};
}
std::vector<double> monotonic_angle{angle.front()};
for (size_t i = 1; i < angle.size(); ++i) {
const double diff_angle = angle.at(i) - monotonic_angle.back();
monotonic_angle.push_back(
monotonic_angle.back() + tier4_autoware_utils::normalizeRadian(diff_angle));
}
return monotonic_angle;
}
std::vector<double> calcEuclidDist(const std::vector<double> & x, const std::vector<double> & y)
{
if (x.size() != y.size()) {
std::cerr << "x y vector size should be the same." << std::endl;
}
std::vector<double> dist_v;
dist_v.push_back(0.0);
for (unsigned int i = 0; i < x.size() - 1; ++i) {
const double dx = x.at(i + 1) - x.at(i);
const double dy = y.at(i + 1) - y.at(i);
dist_v.push_back(dist_v.at(i) + std::hypot(dx, dy));
}
return dist_v;
}
std::array<std::vector<double>, 3> validateTrajectoryPoints(
const std::vector<autoware_auto_planning_msgs::msg::TrajectoryPoint> & points)
{
constexpr double epsilon = 1e-6;
std::vector<double> x;
std::vector<double> y;
std::vector<double> yaw;
for (size_t i = 0; i < points.size(); i++) {
if (i > 0) {
if (
std::fabs(points[i].pose.position.x - points[i - 1].pose.position.x) < epsilon &&
std::fabs(points[i].pose.position.y - points[i - 1].pose.position.y) < epsilon) {
continue;
}
}
x.push_back(points[i].pose.position.x);
y.push_back(points[i].pose.position.y);
yaw.push_back(tf2::getYaw(points[i].pose.orientation));
}
return {x, y, yaw};
}
std::array<std::vector<double>, 2> validatePoints(
const std::vector<autoware_auto_planning_msgs::msg::TrajectoryPoint> & points)
{
std::vector<double> x;
std::vector<double> y;
for (size_t i = 0; i < points.size(); i++) {
if (i > 0) {
if (
std::fabs(points[i].pose.position.x - points[i - 1].pose.position.x) < 1e-6 &&
std::fabs(points[i].pose.position.y - points[i - 1].pose.position.y) < 1e-6) {
continue;
}
}
x.push_back(points[i].pose.position.x);
y.push_back(points[i].pose.position.y);
}
return {x, y};
}
// only two points is supported
std::vector<double> slerpTwoPoints(
std::vector<double> base_s, std::vector<double> base_x, const double begin_diff,
const double end_diff, std::vector<double> new_s)
{
const double h = base_s.at(1) - base_s.at(0);
const double c = begin_diff;
const double d = base_x.at(0);
const double a = (end_diff * h - 2 * base_x.at(1) + c * h + 2 * d) / std::pow(h, 3);
const double b = (3 * base_x.at(1) - end_diff * h - 2 * c * h - 3 * d) / std::pow(h, 2);
std::vector<double> res;
for (const auto & s : new_s) {
const double ds = s - base_s.at(0);
res.push_back(d + (c + (b + a * ds) * ds) * ds);
}
return res;
}
} // namespace
namespace tier4_autoware_utils
{
template <>
geometry_msgs::msg::Point getPoint(const ReferencePoint & p)
{
return p.p;
}
template <>
geometry_msgs::msg::Pose getPose(const ReferencePoint & p)
{
geometry_msgs::msg::Pose pose;
pose.position = p.p;
pose.orientation = createQuaternionFromYaw(p.yaw);
return pose;
}
} // namespace tier4_autoware_utils
namespace geometry_utils
{
geometry_msgs::msg::Point transformToAbsoluteCoordinate2D(
const geometry_msgs::msg::Point & point, const geometry_msgs::msg::Pose & origin)
{
// NOTE: implement transformation without defining yaw variable
// but directly sin/cos of yaw for fast calculation
const auto & q = origin.orientation;
const double cos_yaw = 1 - 2 * q.z * q.z;
const double sin_yaw = 2 * q.w * q.z;
geometry_msgs::msg::Point absolute_p;
absolute_p.x = point.x * cos_yaw - point.y * sin_yaw + origin.position.x;
absolute_p.y = point.x * sin_yaw + point.y * cos_yaw + origin.position.y;
absolute_p.z = point.z;
return absolute_p;
}
geometry_msgs::msg::Quaternion getQuaternionFromPoints(
const geometry_msgs::msg::Point & a, const geometry_msgs::msg::Point & a_root)
{
const double yaw = tier4_autoware_utils::calcAzimuthAngle(a_root, a);
return tier4_autoware_utils::createQuaternionFromYaw(yaw);
}
geometry_msgs::msg::Quaternion getQuaternionFromPoints(
const geometry_msgs::msg::Point & p1, const geometry_msgs::msg::Point & p2,
const geometry_msgs::msg::Point & p3, const geometry_msgs::msg::Point & p4)
{
const double dx = (8.0 * (p3.x - p2.x) - (p4.x - p1.x)) / 12.0;
const double dy = (8.0 * (p3.y - p2.y) - (p4.y - p1.y)) / 12.0;
const double yaw = std::atan2(dy, dx);
return tier4_autoware_utils::createQuaternionFromYaw(yaw);
}
boost::optional<geometry_msgs::msg::Point> transformMapToOptionalImage(
const geometry_msgs::msg::Point & map_point,
const nav_msgs::msg::MapMetaData & occupancy_grid_info)
{
const geometry_msgs::msg::Point relative_p =
transformToRelativeCoordinate2D(map_point, occupancy_grid_info.origin);
const double resolution = occupancy_grid_info.resolution;
const double map_y_height = occupancy_grid_info.height;
const double map_x_width = occupancy_grid_info.width;
const double map_x_in_image_resolution = relative_p.x / resolution;
const double map_y_in_image_resolution = relative_p.y / resolution;
const double image_x = map_y_height - map_y_in_image_resolution;
const double image_y = map_x_width - map_x_in_image_resolution;
if (
image_x >= 0 && image_x < static_cast<int>(map_y_height) && image_y >= 0 &&
image_y < static_cast<int>(map_x_width)) {
geometry_msgs::msg::Point image_point;
image_point.x = image_x;
image_point.y = image_y;
return image_point;
} else {
return boost::none;
}
}
bool transformMapToImage(
const geometry_msgs::msg::Point & map_point,
const nav_msgs::msg::MapMetaData & occupancy_grid_info, geometry_msgs::msg::Point & image_point)
{
geometry_msgs::msg::Point relative_p =
transformToRelativeCoordinate2D(map_point, occupancy_grid_info.origin);
const double map_y_height = occupancy_grid_info.height;
const double map_x_width = occupancy_grid_info.width;
const double scale = 1 / occupancy_grid_info.resolution;
const double map_x_in_image_resolution = relative_p.x * scale;
const double map_y_in_image_resolution = relative_p.y * scale;
const double image_x = map_y_height - map_y_in_image_resolution;
const double image_y = map_x_width - map_x_in_image_resolution;
if (
image_x >= 0 && image_x < static_cast<int>(map_y_height) && image_y >= 0 &&
image_y < static_cast<int>(map_x_width)) {
image_point.x = image_x;
image_point.y = image_y;
return true;
} else {
return false;
}
}
} // namespace geometry_utils
namespace interpolation_utils
{
std::vector<geometry_msgs::msg::Point> interpolate2DPoints(
const std::vector<double> & base_x, const std::vector<double> & base_y, const double resolution,
const double offset = 0.0)
{
if (base_x.empty() || base_y.empty()) {
return std::vector<geometry_msgs::msg::Point>{};
}
const std::vector<double> base_s = calcEuclidDist(base_x, base_y);
if (base_s.empty() || base_s.size() == 1) {
return std::vector<geometry_msgs::msg::Point>{};
}
std::vector<double> new_s;
for (double i = offset; i < base_s.back() - 1e-6; i += resolution) {
new_s.push_back(i);
}
if (new_s.empty()) {
return std::vector<geometry_msgs::msg::Point>{};
}
// spline interpolation
const std::vector<double> interpolated_x = interpolation::slerp(base_s, base_x, new_s);
const std::vector<double> interpolated_y = interpolation::slerp(base_s, base_y, new_s);
for (size_t i = 0; i < interpolated_x.size(); ++i) {
if (std::isnan(interpolated_x[i]) || std::isnan(interpolated_y[i])) {
return std::vector<geometry_msgs::msg::Point>{};
}
}
std::vector<geometry_msgs::msg::Point> interpolated_points;
for (size_t i = 0; i < interpolated_x.size(); ++i) {
geometry_msgs::msg::Point point;
point.x = interpolated_x[i];
point.y = interpolated_y[i];
interpolated_points.push_back(point);
}
return interpolated_points;
}
std::vector<autoware_auto_planning_msgs::msg::TrajectoryPoint> interpolateConnected2DPoints(
const std::vector<double> & base_x, const std::vector<double> & base_y, const double resolution,
const double begin_yaw, const double end_yaw)
{
if (base_x.empty() || base_y.empty()) {
return std::vector<autoware_auto_planning_msgs::msg::TrajectoryPoint>{};
}
std::vector<double> base_s = calcEuclidDist(base_x, base_y);
if (base_s.empty() || base_s.size() == 1) {
return std::vector<autoware_auto_planning_msgs::msg::TrajectoryPoint>{};
}
std::vector<double> new_s;
for (double i = 0.0; i < base_s.back() - 1e-6; i += resolution) {
new_s.push_back(i);
}
// spline interpolation
const auto interpolated_x =
slerpTwoPoints(base_s, base_x, std::cos(begin_yaw), std::cos(end_yaw), new_s);
const auto interpolated_y =
slerpTwoPoints(base_s, base_y, std::sin(begin_yaw), std::sin(end_yaw), new_s);
for (size_t i = 0; i < interpolated_x.size(); i++) {
if (std::isnan(interpolated_x[i]) || std::isnan(interpolated_y[i])) {
return std::vector<autoware_auto_planning_msgs::msg::TrajectoryPoint>{};
}
}
std::vector<autoware_auto_planning_msgs::msg::TrajectoryPoint> interpolated_points;
for (size_t i = 0; i < interpolated_x.size(); i++) {
autoware_auto_planning_msgs::msg::TrajectoryPoint point;
point.pose.position.x = interpolated_x[i];
point.pose.position.y = interpolated_y[i];
const size_t front_idx = (i == interpolated_x.size() - 1) ? i - 1 : i;
const double dx = interpolated_x[front_idx + 1] - interpolated_x[front_idx];
const double dy = interpolated_y[front_idx + 1] - interpolated_y[front_idx];
const double yaw = std::atan2(dy, dx);
point.pose.orientation = tier4_autoware_utils::createQuaternionFromYaw(yaw);
interpolated_points.push_back(point);
}
return interpolated_points;
}
std::vector<autoware_auto_planning_msgs::msg::TrajectoryPoint> interpolate2DTrajectoryPoints(
const std::vector<double> & base_x, const std::vector<double> & base_y,
const std::vector<double> & base_yaw, const double resolution)
{
if (base_x.empty() || base_y.empty() || base_yaw.empty()) {
return std::vector<autoware_auto_planning_msgs::msg::TrajectoryPoint>{};
}
std::vector<double> base_s = calcEuclidDist(base_x, base_y);
if (base_s.empty() || base_s.size() == 1) {
return std::vector<autoware_auto_planning_msgs::msg::TrajectoryPoint>{};
}
std::vector<double> new_s;
for (double i = 0.0; i < base_s.back() - 1e-6; i += resolution) {
new_s.push_back(i);
}
const auto monotonic_base_yaw = convertEulerAngleToMonotonic(base_yaw);
// spline interpolation
std::vector<autoware_auto_planning_msgs::msg::TrajectoryPoint> interpolated_points;
auto clock = rclcpp::Clock{RCL_ROS_TIME};
try {
const auto interpolated_x = interpolation::slerp(base_s, base_x, new_s);
const auto interpolated_y = interpolation::slerp(base_s, base_y, new_s);
const auto interpolated_yaw = interpolation::slerp(base_s, monotonic_base_yaw, new_s);
for (size_t i = 0; i < interpolated_x.size(); i++) {
if (std::isnan(interpolated_x[i]) || std::isnan(interpolated_y[i])) {
return std::vector<autoware_auto_planning_msgs::msg::TrajectoryPoint>{};
}
}
for (size_t i = 0; i < interpolated_x.size(); i++) {
autoware_auto_planning_msgs::msg::TrajectoryPoint point;
point.pose.position.x = interpolated_x[i];
point.pose.position.y = interpolated_y[i];
point.pose.orientation = tier4_autoware_utils::createQuaternionFromYaw(
tier4_autoware_utils::normalizeRadian(interpolated_yaw[i]));
interpolated_points.push_back(point);
}
} catch (const std::invalid_argument & e) {
RCLCPP_WARN_THROTTLE(rclcpp::get_logger("util"), clock, 1000, "%s", e.what());
return std::vector<autoware_auto_planning_msgs::msg::TrajectoryPoint>{};
}
return interpolated_points;
}
std::vector<autoware_auto_planning_msgs::msg::TrajectoryPoint> getInterpolatedTrajectoryPoints(
const std::vector<autoware_auto_planning_msgs::msg::TrajectoryPoint> & points,
const double delta_arc_length)
{
std::array<std::vector<double>, 3> validated_pose = validateTrajectoryPoints(points);
return interpolation_utils::interpolate2DTrajectoryPoints(
validated_pose.at(0), validated_pose.at(1), validated_pose.at(2), delta_arc_length);
}
std::vector<autoware_auto_planning_msgs::msg::TrajectoryPoint> getConnectedInterpolatedPoints(
const std::vector<autoware_auto_planning_msgs::msg::TrajectoryPoint> & points,
const double delta_arc_length, const double begin_yaw, const double end_yaw)
{
std::array<std::vector<double>, 2> validated_pose = validatePoints(points);
return interpolation_utils::interpolateConnected2DPoints(
validated_pose.at(0), validated_pose.at(1), delta_arc_length, begin_yaw, end_yaw);
}
} // namespace interpolation_utils
namespace points_utils
{
// functions to convert to another type of points
std::vector<geometry_msgs::msg::Pose> convertToPosesWithYawEstimation(
const std::vector<geometry_msgs::msg::Point> points)
{
std::vector<geometry_msgs::msg::Pose> poses;
if (points.empty()) {
return poses;
} else if (points.size() == 1) {
geometry_msgs::msg::Pose pose;
pose.position = points.at(0);
poses.push_back(pose);
return poses;
}
for (size_t i = 0; i < points.size(); ++i) {
geometry_msgs::msg::Pose pose;
pose.position = points.at(i);
const size_t front_idx = (i == points.size() - 1) ? i - 1 : i;
const double points_yaw =
tier4_autoware_utils::calcAzimuthAngle(points.at(front_idx), points.at(front_idx + 1));
pose.orientation = tier4_autoware_utils::createQuaternionFromYaw(points_yaw);
poses.push_back(pose);
}
return poses;
}
template <typename T>
ReferencePoint convertToReferencePoint(const T & point)
{
ReferencePoint ref_point;
const auto & pose = tier4_autoware_utils::getPose(point);
ref_point.p = pose.position;
ref_point.yaw = tf2::getYaw(pose.orientation);
return ref_point;
}
template ReferencePoint convertToReferencePoint<autoware_auto_planning_msgs::msg::TrajectoryPoint>(
const autoware_auto_planning_msgs::msg::TrajectoryPoint & point);
template ReferencePoint convertToReferencePoint<geometry_msgs::msg::Pose>(
const geometry_msgs::msg::Pose & point);
template <>
ReferencePoint convertToReferencePoint(const geometry_msgs::msg::Point & point)
{
ReferencePoint ref_point;
ref_point.p = point;
return ref_point;
}
std::vector<autoware_auto_planning_msgs::msg::TrajectoryPoint> concatTrajectory(
const std::vector<autoware_auto_planning_msgs::msg::TrajectoryPoint> & traj_points,
const std::vector<autoware_auto_planning_msgs::msg::TrajectoryPoint> & extended_traj_points)
{
std::vector<autoware_auto_planning_msgs::msg::TrajectoryPoint> trajectory;
trajectory.insert(trajectory.end(), traj_points.begin(), traj_points.end());
trajectory.insert(trajectory.end(), extended_traj_points.begin(), extended_traj_points.end());
return trajectory;
}
void compensateLastPose(
const autoware_auto_planning_msgs::msg::PathPoint & last_path_point,
std::vector<autoware_auto_planning_msgs::msg::TrajectoryPoint> & traj_points,
const double delta_dist_threshold, const double delta_yaw_threshold)
{
if (traj_points.empty()) {
traj_points.push_back(convertToTrajectoryPoint(last_path_point));
return;
}
const geometry_msgs::msg::Pose last_traj_pose = traj_points.back().pose;
const double dist =
tier4_autoware_utils::calcDistance2d(last_path_point.pose.position, last_traj_pose.position);
const double norm_diff_yaw = [&]() {
const double diff_yaw =
tf2::getYaw(last_path_point.pose.orientation) - tf2::getYaw(last_traj_pose.orientation);
return tier4_autoware_utils::normalizeRadian(diff_yaw);
}();
if (dist > delta_dist_threshold || std::fabs(norm_diff_yaw) > delta_yaw_threshold) {
traj_points.push_back(convertToTrajectoryPoint(last_path_point));
}
}
int getNearestIdx(
const std::vector<ReferencePoint> & points, const double target_s, const int begin_idx)
{
double nearest_delta_s = std::numeric_limits<double>::max();
int nearest_idx = begin_idx;
for (size_t i = begin_idx; i < points.size(); i++) {
double diff = std::fabs(target_s - points[i].s);
if (diff < nearest_delta_s) {
nearest_delta_s = diff;
nearest_idx = i;
}
}
return nearest_idx;
}
} // namespace points_utils
namespace utils
{
void logOSQPSolutionStatus(const int solution_status, const std::string & msg)
{
/******************
* Solver Status *
******************/
const int LOCAL_OSQP_SOLVED = 1;
const int LOCAL_OSQP_SOLVED_INACCURATE = 2;
const int LOCAL_OSQP_MAX_ITER_REACHED = -2;
const int LOCAL_OSQP_PRIMAL_INFEASIBLE = -3;
const int LOCAL_OSQP_PRIMAL_INFEASIBLE_INACCURATE = 3;
const int LOCAL_OSQP_DUAL_INFEASIBLE = -4;
const int LOCAL_OSQP_DUAL_INFEASIBLE_INACCURATE = 4;
const int LOCAL_OSQP_SIGINT = -5;
const int LOCAL_OSQP_TIME_LIMIT_REACHED = -6;
const int LOCAL_OSQP_UNSOLVED = -10;
const int LOCAL_OSQP_NON_CVX = -7;
if (solution_status == LOCAL_OSQP_SOLVED) {
} else if (solution_status == LOCAL_OSQP_DUAL_INFEASIBLE_INACCURATE) {
RCLCPP_WARN(
rclcpp::get_logger("util"),
"[Avoidance] %s OSQP solution status: OSQP_DUAL_INFEASIBLE_INACCURATE", msg.c_str());
} else if (solution_status == LOCAL_OSQP_PRIMAL_INFEASIBLE_INACCURATE) {
RCLCPP_WARN(
rclcpp::get_logger("util"),
"[Avoidance] %s OSQP solution status: OSQP_PRIMAL_INFEASIBLE_INACCURATE", msg.c_str());
} else if (solution_status == LOCAL_OSQP_SOLVED_INACCURATE) {
RCLCPP_WARN(
rclcpp::get_logger("util"), "[Avoidance] %s OSQP solution status: OSQP_SOLVED_INACCURATE",
msg.c_str());
} else if (solution_status == LOCAL_OSQP_MAX_ITER_REACHED) {
RCLCPP_WARN(
rclcpp::get_logger("util"), "[Avoidance] %s OSQP solution status: OSQP_ITER_REACHED",
msg.c_str());
} else if (solution_status == LOCAL_OSQP_PRIMAL_INFEASIBLE) {
RCLCPP_WARN(
rclcpp::get_logger("util"), "[Avoidance] %s OSQP solution status: OSQP_PRIMAL_INFEASIBLE",
msg.c_str());
} else if (solution_status == LOCAL_OSQP_DUAL_INFEASIBLE) {
RCLCPP_WARN(
rclcpp::get_logger("util"), "[Avoidance] %s OSQP solution status: OSQP_DUAL_INFEASIBLE",
msg.c_str());
} else if (solution_status == LOCAL_OSQP_SIGINT) {
RCLCPP_WARN(
rclcpp::get_logger("util"), "[Avoidance] %s OSQP solution status: OSQP_SIGINT", msg.c_str());
RCLCPP_WARN(
rclcpp::get_logger("util"), "[Avoidance] Interrupted by user, process will be finished.");
std::exit(0);
} else if (solution_status == LOCAL_OSQP_TIME_LIMIT_REACHED) {
RCLCPP_WARN(
rclcpp::get_logger("util"), "[Avoidance] %s OSQP solution status: OSQP_TIME_LIMIT_REACHED",
msg.c_str());
} else if (solution_status == LOCAL_OSQP_UNSOLVED) {
RCLCPP_WARN(
rclcpp::get_logger("util"), "[Avoidance] %s OSQP solution status: OSQP_UNSOLVED",
msg.c_str());
} else if (solution_status == LOCAL_OSQP_NON_CVX) {
RCLCPP_WARN(
rclcpp::get_logger("util"), "[Avoidance] %s OSQP solution status: OSQP_NON_CVX", msg.c_str());
} else {
RCLCPP_WARN(
rclcpp::get_logger("util"), "[Avoidance] %s OSQP solution status: Not defined %d",
msg.c_str(), solution_status);
}
}
} // namespace utils