Skip to content

Commit 0914c09

Browse files
committed
add "ratio of means" example to obs stat vignette
1 parent 470d7c3 commit 0914c09

File tree

1 file changed

+50
-0
lines changed

1 file changed

+50
-0
lines changed

vignettes/observed_stat_examples.Rmd

+50
Original file line numberDiff line numberDiff line change
@@ -1291,6 +1291,56 @@ visualize(sampling_dist) +
12911291

12921292
Note that the `t` distribution is recentered and rescaled to lie on the scale of the observed data.
12931293

1294+
`infer` also provides functionality to calculate ratios of means. The workflow looks similar to that for `diff in means`.
1295+
1296+
Finding the observed statistic,
1297+
1298+
```{r}
1299+
d_hat <- gss %>%
1300+
specify(hours ~ college) %>%
1301+
calculate(stat = "ratio of means", order = c("degree", "no degree"))
1302+
```
1303+
1304+
Alternatively, using the `observe()` wrapper to calculate the observed statistic,
1305+
1306+
```{r}
1307+
d_hat <- gss %>%
1308+
observe(hours ~ college,
1309+
stat = "ratio of means", order = c("degree", "no degree"))
1310+
```
1311+
1312+
Then, generating a bootstrap distribution,
1313+
1314+
```{r}
1315+
boot_dist <- gss %>%
1316+
specify(hours ~ college) %>%
1317+
generate(reps = 1000, type = "bootstrap") %>%
1318+
calculate(stat = "ratio of means", order = c("degree", "no degree"))
1319+
```
1320+
1321+
Use the bootstrap distribution to find a confidence interval,
1322+
1323+
```{r}
1324+
percentile_ci <- get_ci(boot_dist)
1325+
```
1326+
1327+
Visualizing the observed statistic alongside the distribution,
1328+
1329+
```{r}
1330+
visualize(boot_dist) +
1331+
shade_confidence_interval(endpoints = percentile_ci)
1332+
```
1333+
1334+
Alternatively, use the bootstrap distribution to find a confidence interval using the standard error,
1335+
1336+
```{r}
1337+
standard_error_ci <- boot_dist %>%
1338+
get_ci(type = "se", point_estimate = d_hat)
1339+
1340+
visualize(boot_dist) +
1341+
shade_confidence_interval(endpoints = standard_error_ci)
1342+
```
1343+
12941344
### One numerical variable, one categorical (2 levels) (t)
12951345

12961346
Finding the standardized point estimate,

0 commit comments

Comments
 (0)