-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtraining.py
358 lines (279 loc) · 11.4 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import numpy as np
import gym
from gym import spaces
from stable_baselines3 import SAC
import optuna
from qutip import tensor, basis, sigmax, sigmay, sigmaz, sigmam, Bloch, mesolve, sesolve, qeye, fidelity, sigmap
from argparse import ArgumentParser
sm = sigmam()
class QD_T_Env(gym.Env):
'''
Environement for putting the qubit into a target state.
The agent is not aware what the target is, so it must be trained and evaluated on the same target.
It can be used with limited pulse areas, but the agent must be optimized for it,
and I'm the current observables are not particularly good for this task.
'''
def __init__(self,
rho0,
detuning = 0,
gamma = 0,
gamma_s = 0,
eta = 0,
target = None,
steps_max = 1000,
max_power = 1,
dt = 0.001,
steps = 100,
pulse_area = float('inf'),
seed = 1,
reward_on_arrival = False):
super(QD_T_Env, self).__init__()
self.reward_on_arrival = reward_on_arrival
self.steps = steps
self.n_steps = 0
self.steps_max = steps_max
# target
np.random.seed(seed = seed)
self.generated_target = False
if target is None:
target = self._rand_target()
self.generated_target = True
self.target = target
ot = [((self.target)*op).tr().real for op in [sigmax(), sigmay(), sigmaz()]]
ph = np.arctan2(ot[1],ot[0])
th = np.arctan2(np.sqrt(ot[0]**2 + ot[1]**2), ot[2])
self.t_angles = [ph,th]
self.state0 = rho0
self.state = rho0
self.fidelities = []
# Hamiltonian, dissipation and time
self.detuning = detuning
self.gamma = gamma
self.gamma_s = gamma_s
self.eta = eta #coupling rate
self.max_power = max_power
self.pulse_area = np.sqrt(pulse_area)
self.remaining_pulse_area = 1
largest_time_scale = np.max([detuning, gamma, gamma_s, max_power])
if dt > 0.1 * 1./largest_time_scale:
c = dt/0.01*largest_time_scale
dt = 0.01/largest_time_scale
self.steps *= int(c)
print(f'Initializing dt to {dt}, increasing n. substeps to {self.steps}')
self.dt = dt
self.c_ops = [np.sqrt(gamma)*sigmap(), np.sqrt(gamma_s/2)*sigmaz()]
pulse_coef = np.sqrt(gamma*self.eta) if np.sqrt(gamma*self.eta) else 1
def H(detuning, phi, p):
return detuning*sigmaz()/2 + 1j * p * pulse_coef * (sm*np.exp(-1j*np.pi*phi) - sm.dag()*np.exp(1j*np.pi*phi))
self.H = H
# observation and action spaces
n_coords = 3
n_target_diff = 2
self.observation_space = spaces.Box(low=np.array([-1]*n_coords+[-2]*n_target_diff),
high=np.array([1]*n_coords+[ 2]*n_target_diff),
shape=(n_target_diff+n_coords,), dtype=np.float32)
self.action_space = spaces.Box(
low=np.array([-self.max_power, -1]), high=np.array([self.max_power,1]), shape=(2,), dtype=np.float32
)
def _rand_target(self):
'''
Generate a target state density matrix.
Because the problem in symmetrical wrt rotations around Z,
it seems unnecessary to provide a phase, it can be added post hoc via rotation of the whore result.
'''
phase, amp = 0, np.random.rand()
#phase = (phase*2 - 1)*np.pi
target = ((1-amp)**0.5 *basis(2,0) + amp**0.5 *np.exp(-1j*phase)*basis(2,1))
ot = [((self.target)*op).tr().real for op in [sigmax(), sigmay(), sigmaz()]]
ph = np.arctan2(ot[1],ot[0])
th = np.arctan2(np.sqrt(ot[0]**2 + ot[1]**2), ot[2])
self.t_anglself.statees = [ph,th]
return target*target.dag()
def _get_obs(self):
rho = self.state
o = [(rho*op).tr().real for op in [sigmax(), sigmay(), sigmaz()]]
ph = np.arctan2(o[1],o[0])
th = np.arctan2(np.sqrt(o[0]**2 + o[1]**2), o[2])
#p = sum([v**2 for v in o])
t_ph, t_th = self.t_angles
ot = [(th-t_th)/np.pi, (ph-t_ph)/np.pi]
return np.array(o+ot, dtype=np.float32)
def reset(self):
if self.generated_target:
self.target = self._rand_target()
self.remaining_pulse_area = 1
self.state = self.state0
self.n_steps = 0
self.last_p = 0
self.fidelities = []
return self._get_obs()
def step(self, p):
rho = self.state
H = self.H
c_ops = self.c_ops
target = self.target
dt = self.dt
p, phi = p
#self.last_p = p
# if the pulse area is finite, we keep track of the remaining proportion of it
p = np.sign(p) * min(np.abs(p), self.remaining_pulse_area * self.pulse_area)
self.remaining_pulse_area = max(0, self.remaining_pulse_area - p/self.pulse_area)
try:
rho = mesolve(H(self.detuning, phi, p),
rho,
np.linspace(0, self.steps*dt, self.steps+1),
c_ops).states[-1]
# qutip error where it wants to increase num steps. unfortunately it's 'Exception' and not something less general
except Exception as e:
print(e)
print('bruteforce calculation')
for _ in range(self.steps):
L = -1j * (H(self.detuning, phi, p)*rho - rho*H(self.detuning, phi, p))
for c in c_ops:
L += c*rho*c.dag() - 0.5*(c.dag()*c*rho + rho*c.dag()*c)
rho += L * dt
rho = rho.unit()
self.fidelities += [fidelity(target, rho)]
reward = 0 if self.reward_on_arrival else self.fidelities[-1]
done = False
if self.n_steps == self.steps_max:
reward = np.max(self.fidelities) if self.reward_on_arrival else reward
done = True
self.state = rho
self.n_steps += 1
return self._get_obs(), reward, done, {}
def render(self):
raise NotImplementedError()
def close (self):
pass
def eval_model(env, model, n_steps = 100, verbose = 1):
obs = env.reset()
actions = []
points = [] # trajectory
rewards = []
for step in range(n_steps):
action, _ = model.predict(obs, deterministic=True)
if verbose==2:
print("Step {}".format(step + 1))
print("Action: ", action)
points.append(obs)
obs, reward, done, info = env.step(action)
rewards.append(reward)
actions.append(action)
if verbose==2:
print('obs=', obs, 'reward=', reward, 'done=', done)
if done:
obs = env.reset()
points.append(obs)
if verbose:
print(f"Mean reward={np.mean(rewards)}")
return np.array(points), np.array(actions), np.array(rewards)
def sample_sac_params(trial: optuna.Trial):
"""Sampler for SAC hyperparameters."""
gamma = 1.0 - trial.suggest_float("gamma", 0.0001, 0.1, log=True)
learning_rate = trial.suggest_float("learning_rate", 1e-5, 5e-2, log=True)
learning_starts = trial.suggest_int('learning_starts', 100, 10000, log=True)
tau = trial.suggest_float("tau", 1e-4, 1, log=True)
return {
"gamma": gamma,
"learning_rate": learning_rate,
"learning_starts":learning_starts,
'tau' : tau
}
def make_env(seed = None):
'''
Create an instance of environement with random parameters
'''
if seed is not None:
np.random.seed(seed)
return QD_T_Env(rho0 = basis(2,0)*basis(2,0).dag(),
detuning = 0.1*(np.random.rand()-0.5),
gamma = 0.1*np.random.rand(),
gamma_s = 0,
target = basis(2,1)*basis(2,1).dag(),
steps_max = 500,
max_power = 1,
dt = 0.001,
steps = 100,
seed = 1)
def q_objective(trial):
'''
The function to optimize while looking for the model hyperparameters (provided via optuna trial).
We want the model be able to adapt to different conditions, so the script semi-randomly generates them.
We want different trials to be in the same conditions, hence all the seed machinations.
'''
n_trains = 10
env = make_env(seed = 0)
params = sample_sac_params(trial)
model = SAC(policy = "MlpPolicy", env = env, verbose = 0, **params)
total_timesteps = trial.suggest_int('total_timesteps', 100, 50_000, log=True)
nan_encountered = False
try:
for i in range(n_trains):
model.learn(total_timesteps//n_trains)
env = make_env(seed = 1+i) # generate env with different params
model.set_env(env)
except AssertionError as e:
print(e)
nan_encountered = True
finally:
# Free memory
model.env.close()
env.close()
if nan_encountered:
return float("nan")
# evaluate the model on a group of different random environements
return np.mean(
np.array(
[eval_model(make_env(seed = i + n_trains + 1),
model,
n_steps = 500,
verbose = 0
)[2] for i in range(20)]
)
)
def optimize(n_trials=50):
study = optuna.create_study(direction='maximize')
study.optimize(q_objective, n_trials=n_trials, catch = (ValueError,))
trial = study.best_trial
print('Accuracy: {}'.format(trial.value))
print("Best hyperparameters: {}".format(trial.params))
return trial
def train_best_model(params, n_trains = 10, offset = 1000):
'''
train a model with the hyperparameters corresponding to the best result
'''
total_timesteps = params.pop('total_timesteps', None)
qenv = make_env(offset)
qenv2 = make_env(2*offset)
best_model = SAC(policy = "MlpPolicy", env = qenv, verbose = 0, **params)
for i in range(n_trains):
qenv = make_env(offset+i)
best_model.set_env(qenv)
best_model.learn(total_timesteps//n_trains,
eval_env = qenv2,
eval_freq = total_timesteps//n_trains//2)
return best_model
if __name__ == "__main__":
parser = ArgumentParser(
description="Optimize and train a model to excite a TLS"
)
parser.add_argument(
"--n-trials",
"-t",
default=50,
type=int,
help="Number of optimization trials",
)
parser.add_argument(
"--name",
'-n',
type=str,
default = 'my_model',
help="Name of the trained and saved model.",
)
args = parser.parse_args()
trial = optimize(n_trials=args.n_trials)
best_model = train_best_model(trial.params, n_trains = 10, offset = 1000)
best_model.save(args.name)
print('Finished')