-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcifar_10_utils.py
58 lines (49 loc) · 1.37 KB
/
cifar_10_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import os
import random
import numpy as np
import torch
import torchvision
from torchvision import transforms
# from constants import *
## CIFAR-10 only used for ViT at the moment
from vit_constants import *
transform_fn = transforms.Compose(
[
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(15),
transforms.ToTensor(),
# precomputed CIFAR100 mean and std
transforms.Normalize(
mean=(0.4914, 0.4822, 0.4465), std=(0.2470, 0.2434, 0.2616)
),
]
)
## for reverting normalization for visualization purposes
invTrans = transforms.Normalize(
mean=[-0.4914 / 0.2470, -0.4822 / 0.2434, -0.4465 / 0.2616],
std=[1 / 0.2470, 1 / 0.2434, 1 / 0.2616],
)
train_data = torchvision.datasets.CIFAR10(
root="./data", train=True, download=True, transform=transform_fn
)
val_data = torchvision.datasets.CIFAR10(
root="./data", train=False, download=True, transform=transform_fn
)
train_loader = torch.utils.data.DataLoader(
train_data, batch_size=BATCH_SIZE, shuffle=False
)
# no shuffle for ease of reproducibility when debugging
val_loader = torch.utils.data.DataLoader(val_data, batch_size=BATCH_SIZE, shuffle=False)
class_labels = [
"airplane",
"automobile",
"bird",
"cat",
"deer",
"dog",
"frog",
"horse",
"ship",
"truck",
]