-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathchapter3Bayes_ex5and6.html
163 lines (143 loc) · 174 KB
/
chapter3Bayes_ex5and6.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1">
<link href="data:text/css,%0A%0A%40font%2Dface%20%7B%0A%20%20font%2Dfamily%3A%20octicons%2Dlink%3B%0A%20%20src%3A%20url%28data%3Afont%2Fwoff%3Bcharset%3Dutf%2D8%3Bbase64%3Bbase64%2Cd09GRgABAAAAAAZwABAAAAAACFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEU0lHAAAGaAAAAAgAAAAIAAAAAUdTVUIAAAZcAAAACgAAAAoAAQAAT1MvMgAAAyQAAABJAAAAYFYEU3RjbWFwAAADcAAAAEUAAACAAJThvmN2dCAAAATkAAAABAAAAAQAAAAAZnBnbQAAA7gAAACyAAABCUM%2B8IhnYXNwAAAGTAAAABAAAAAQABoAI2dseWYAAAFsAAABPAAAAZwcEq9taGVhZAAAAsgAAAA0AAAANgh4a91oaGVhAAADCAAAABoAAAAkCA8DRGhtdHgAAAL8AAAADAAAAAwGAACfbG9jYQAAAsAAAAAIAAAACABiATBtYXhwAAACqAAAABgAAAAgAA8ASm5hbWUAAAToAAABQgAAAlXu73sOcG9zdAAABiwAAAAeAAAAME3QpOBwcmVwAAAEbAAAAHYAAAB%2FaFGpk3jaTY6xa8JAGMW%2FO62BDi0tJLYQincXEypYIiGJjSgHniQ6umTsUEyLm5BV6NDBP8Tpts6F0v%2Bk%2F0an2i%2BitHDw3v2%2B9%2BDBKTzsJNnWJNTgHEy4BgG3EMI9DCEDOGEXzDADU5hBKMIgNPZqoD3SilVaXZCER3%2FI7AtxEJLtzzuZfI%2BVVkprxTlXShWKb3TBecG11rwoNlmmn1P2WYcJczl32etSpKnziC7lQyWe1smVPy%2FLt7Kc%2B0vWY%2FgAgIIEqAN9we0pwKXreiMasxvabDQMM4riO%2BqxM2ogwDGOZTXxwxDiycQIcoYFBLj5K3EIaSctAq2kTYiw%2Bymhce7vwM9jSqO8JyVd5RH9gyTt2%2BJ%2FyUmYlIR0s04n6%2B7Vm1ozezUeLEaUjhaDSuXHwVRgvLJn1tQ7xiuVv%2FocTRF42mNgZGBgYGbwZOBiAAFGJBIMAAizAFoAAABiAGIAznjaY2BkYGAA4in8zwXi%2BW2%2BMjCzMIDApSwvXzC97Z4Ig8N%2FBxYGZgcgl52BCSQKAA3jCV8CAABfAAAAAAQAAEB42mNgZGBg4f3vACQZQABIMjKgAmYAKEgBXgAAeNpjYGY6wTiBgZWBg2kmUxoDA4MPhGZMYzBi1AHygVLYQUCaawqDA4PChxhmh%2F8ODDEsvAwHgMKMIDnGL0x7gJQCAwMAJd4MFwAAAHjaY2BgYGaA4DAGRgYQkAHyGMF8NgYrIM3JIAGVYYDT%2BAEjAwuDFpBmA9KMDEwMCh9i%2Fv8H8sH0%2F4dQc1iAmAkALaUKLgAAAHjaTY9LDsIgEIbtgqHUPpDi3gPoBVyRTmTddOmqTXThEXqrob2gQ1FjwpDvfwCBdmdXC5AVKFu3e5MfNFJ29KTQT48Ob9%2FlqYwOGZxeUelN2U2R6%2BcArgtCJpauW7UQBqnFkUsjAY%2FkOU1cP%2BDAgvxwn1chZDwUbd6CFimGXwzwF6tPbFIcjEl%2BvvmM%2FbyA48e6tWrKArm4ZJlCbdsrxksL1AwWn%2FyBSJKpYbq8AXaaTb8AAHja28jAwOC00ZrBeQNDQOWO%2F%2FsdBBgYGRiYWYAEELEwMTE4uzo5Zzo5b2BxdnFOcALxNjA6b2ByTswC8jYwg0VlNuoCTWAMqNzMzsoK1rEhNqByEyerg5PMJlYuVueETKcd%2F89uBpnpvIEVomeHLoMsAAe1Id4AAAAAAAB42oWQT07CQBTGv0JBhagk7HQzKxca2sJCE1hDt4QF%2B9JOS0nbaaYDCQfwCJ7Au3AHj%2BLO13FMmm6cl7785vven0kBjHCBhfpYuNa5Ph1c0e2Xu3jEvWG7UdPDLZ4N92nOm%2BEBXuAbHmIMSRMs%2B4aUEd4Nd3CHD8NdvOLTsA2GL8M9PODbcL%2BhD7C1xoaHeLJSEao0FEW14ckxC%2BTU8TxvsY6X0eLPmRhry2WVioLpkrbp84LLQPGI7c6sOiUzpWIWS5GzlSgUzzLBSikOPFTOXqly7rqx0Z1Q5BAIoZBSFihQYQOOBEdkCOgXTOHA07HAGjGWiIjaPZNW13%2F%2Blm6S9FT7rLHFJ6fQbkATOG1j2OFMucKJJsxIVfQORl%2B9Jyda6Sl1dUYhSCm1dyClfoeDve4qMYdLEbfqHf3O%2FAdDumsjAAB42mNgYoAAZQYjBmyAGYQZmdhL8zLdDEydARfoAqIAAAABAAMABwAKABMAB%2F%2F%2FAA8AAQAAAAAAAAAAAAAAAAABAAAAAA%3D%3D%29%20format%28%27woff%27%29%3B%0A%7D%0A%0Abody%20%7B%0A%20%20%2Dwebkit%2Dtext%2Dsize%2Dadjust%3A%20100%25%3B%0A%20%20text%2Dsize%2Dadjust%3A%20100%25%3B%0A%20%20color%3A%20%23333%3B%0A%20%20font%2Dfamily%3A%20%22Helvetica%20Neue%22%2C%20Helvetica%2C%20%22Segoe%20UI%22%2C%20Arial%2C%20freesans%2C%20sans%2Dserif%2C%20%22Apple%20Color%20Emoji%22%2C%20%22Segoe%20UI%20Emoji%22%2C%20%22Segoe%20UI%20Symbol%22%3B%0A%20%20font%2Dsize%3A%2016px%3B%0A%20%20line%2Dheight%3A%201%2E6%3B%0A%20%20word%2Dwrap%3A%20break%2Dword%3B%0A%7D%0A%0Aa%20%7B%0A%20%20background%2Dcolor%3A%20transparent%3B%0A%7D%0A%0Aa%3Aactive%2C%0Aa%3Ahover%20%7B%0A%20%20outline%3A%200%3B%0A%7D%0A%0Astrong%20%7B%0A%20%20font%2Dweight%3A%20bold%3B%0A%7D%0A%0Ah1%20%7B%0A%20%20font%2Dsize%3A%202em%3B%0A%20%20margin%3A%200%2E67em%200%3B%0A%7D%0A%0Aimg%20%7B%0A%20%20border%3A%200%3B%0A%7D%0A%0Ahr%20%7B%0A%20%20box%2Dsizing%3A%20content%2Dbox%3B%0A%20%20height%3A%200%3B%0A%7D%0A%0Apre%20%7B%0A%20%20overflow%3A%20auto%3B%0A%7D%0A%0Acode%2C%0Akbd%2C%0Apre%20%7B%0A%20%20font%2Dfamily%3A%20monospace%2C%20monospace%3B%0A%20%20font%2Dsize%3A%201em%3B%0A%7D%0A%0Ainput%20%7B%0A%20%20color%3A%20inherit%3B%0A%20%20font%3A%20inherit%3B%0A%20%20margin%3A%200%3B%0A%7D%0A%0Ahtml%20input%5Bdisabled%5D%20%7B%0A%20%20cursor%3A%20default%3B%0A%7D%0A%0Ainput%20%7B%0A%20%20line%2Dheight%3A%20normal%3B%0A%7D%0A%0Ainput%5Btype%3D%22checkbox%22%5D%20%7B%0A%20%20box%2Dsizing%3A%20border%2Dbox%3B%0A%20%20padding%3A%200%3B%0A%7D%0A%0Atable%20%7B%0A%20%20border%2Dcollapse%3A%20collapse%3B%0A%20%20border%2Dspacing%3A%200%3B%0A%7D%0A%0Atd%2C%0Ath%20%7B%0A%20%20padding%3A%200%3B%0A%7D%0A%0A%2A%20%7B%0A%20%20box%2Dsizing%3A%20border%2Dbox%3B%0A%7D%0A%0Ainput%20%7B%0A%20%20font%3A%2013px%20%2F%201%2E4%20Helvetica%2C%20arial%2C%20nimbussansl%2C%20liberationsans%2C%20freesans%2C%20clean%2C%20sans%2Dserif%2C%20%22Apple%20Color%20Emoji%22%2C%20%22Segoe%20UI%20Emoji%22%2C%20%22Segoe%20UI%20Symbol%22%3B%0A%7D%0A%0Aa%20%7B%0A%20%20color%3A%20%234078c0%3B%0A%20%20text%2Ddecoration%3A%20none%3B%0A%7D%0A%0Aa%3Ahover%2C%0Aa%3Aactive%20%7B%0A%20%20text%2Ddecoration%3A%20underline%3B%0A%7D%0A%0Ahr%20%7B%0A%20%20height%3A%200%3B%0A%20%20margin%3A%2015px%200%3B%0A%20%20overflow%3A%20hidden%3B%0A%20%20background%3A%20transparent%3B%0A%20%20border%3A%200%3B%0A%20%20border%2Dbottom%3A%201px%20solid%20%23ddd%3B%0A%7D%0A%0Ahr%3Abefore%20%7B%0A%20%20display%3A%20table%3B%0A%20%20content%3A%20%22%22%3B%0A%7D%0A%0Ahr%3Aafter%20%7B%0A%20%20display%3A%20table%3B%0A%20%20clear%3A%20both%3B%0A%20%20content%3A%20%22%22%3B%0A%7D%0A%0Ah1%2C%0Ah2%2C%0Ah3%2C%0Ah4%2C%0Ah5%2C%0Ah6%20%7B%0A%20%20margin%2Dtop%3A%2015px%3B%0A%20%20margin%2Dbottom%3A%2015px%3B%0A%20%20line%2Dheight%3A%201%2E1%3B%0A%7D%0A%0Ah1%20%7B%0A%20%20font%2Dsize%3A%2030px%3B%0A%7D%0A%0Ah2%20%7B%0A%20%20font%2Dsize%3A%2021px%3B%0A%7D%0A%0Ah3%20%7B%0A%20%20font%2Dsize%3A%2016px%3B%0A%7D%0A%0Ah4%20%7B%0A%20%20font%2Dsize%3A%2014px%3B%0A%7D%0A%0Ah5%20%7B%0A%20%20font%2Dsize%3A%2012px%3B%0A%7D%0A%0Ah6%20%7B%0A%20%20font%2Dsize%3A%2011px%3B%0A%7D%0A%0Ablockquote%20%7B%0A%20%20margin%3A%200%3B%0A%7D%0A%0Aul%2C%0Aol%20%7B%0A%20%20padding%3A%200%3B%0A%20%20margin%2Dtop%3A%200%3B%0A%20%20margin%2Dbottom%3A%200%3B%0A%7D%0A%0Aol%20ol%2C%0Aul%20ol%20%7B%0A%20%20list%2Dstyle%2Dtype%3A%20lower%2Droman%3B%0A%7D%0A%0Aul%20ul%20ol%2C%0Aul%20ol%20ol%2C%0Aol%20ul%20ol%2C%0Aol%20ol%20ol%20%7B%0A%20%20list%2Dstyle%2Dtype%3A%20lower%2Dalpha%3B%0A%7D%0A%0Add%20%7B%0A%20%20margin%2Dleft%3A%200%3B%0A%7D%0A%0Acode%20%7B%0A%20%20font%2Dfamily%3A%20Consolas%2C%20%22Liberation%20Mono%22%2C%20Menlo%2C%20Courier%2C%20monospace%3B%0A%20%20font%2Dsize%3A%2012px%3B%0A%7D%0A%0Apre%20%7B%0A%20%20margin%2Dtop%3A%200%3B%0A%20%20margin%2Dbottom%3A%200%3B%0A%20%20font%3A%2012px%20Consolas%2C%20%22Liberation%20Mono%22%2C%20Menlo%2C%20Courier%2C%20monospace%3B%0A%7D%0A%0A%2Eselect%3A%3A%2Dms%2Dexpand%20%7B%0A%20%20opacity%3A%200%3B%0A%7D%0A%0A%2Eocticon%20%7B%0A%20%20font%3A%20normal%20normal%20normal%2016px%2F1%20octicons%2Dlink%3B%0A%20%20display%3A%20inline%2Dblock%3B%0A%20%20text%2Ddecoration%3A%20none%3B%0A%20%20text%2Drendering%3A%20auto%3B%0A%20%20%2Dwebkit%2Dfont%2Dsmoothing%3A%20antialiased%3B%0A%20%20%2Dmoz%2Dosx%2Dfont%2Dsmoothing%3A%20grayscale%3B%0A%20%20%2Dwebkit%2Duser%2Dselect%3A%20none%3B%0A%20%20%2Dmoz%2Duser%2Dselect%3A%20none%3B%0A%20%20%2Dms%2Duser%2Dselect%3A%20none%3B%0A%20%20user%2Dselect%3A%20none%3B%0A%7D%0A%0A%2Eocticon%2Dlink%3Abefore%20%7B%0A%20%20content%3A%20%27%5Cf05c%27%3B%0A%7D%0A%0A%2Emarkdown%2Dbody%3Abefore%20%7B%0A%20%20display%3A%20table%3B%0A%20%20content%3A%20%22%22%3B%0A%7D%0A%0A%2Emarkdown%2Dbody%3Aafter%20%7B%0A%20%20display%3A%20table%3B%0A%20%20clear%3A%20both%3B%0A%20%20content%3A%20%22%22%3B%0A%7D%0A%0A%2Emarkdown%2Dbody%3E%2A%3Afirst%2Dchild%20%7B%0A%20%20margin%2Dtop%3A%200%20%21important%3B%0A%7D%0A%0A%2Emarkdown%2Dbody%3E%2A%3Alast%2Dchild%20%7B%0A%20%20margin%2Dbottom%3A%200%20%21important%3B%0A%7D%0A%0Aa%3Anot%28%5Bhref%5D%29%20%7B%0A%20%20color%3A%20inherit%3B%0A%20%20text%2Ddecoration%3A%20none%3B%0A%7D%0A%0A%2Eanchor%20%7B%0A%20%20display%3A%20inline%2Dblock%3B%0A%20%20padding%2Dright%3A%202px%3B%0A%20%20margin%2Dleft%3A%20%2D18px%3B%0A%7D%0A%0A%2Eanchor%3Afocus%20%7B%0A%20%20outline%3A%20none%3B%0A%7D%0A%0Ah1%2C%0Ah2%2C%0Ah3%2C%0Ah4%2C%0Ah5%2C%0Ah6%20%7B%0A%20%20margin%2Dtop%3A%201em%3B%0A%20%20margin%2Dbottom%3A%2016px%3B%0A%20%20font%2Dweight%3A%20bold%3B%0A%20%20line%2Dheight%3A%201%2E4%3B%0A%7D%0A%0Ah1%20%2Eocticon%2Dlink%2C%0Ah2%20%2Eocticon%2Dlink%2C%0Ah3%20%2Eocticon%2Dlink%2C%0Ah4%20%2Eocticon%2Dlink%2C%0Ah5%20%2Eocticon%2Dlink%2C%0Ah6%20%2Eocticon%2Dlink%20%7B%0A%20%20color%3A%20%23000%3B%0A%20%20vertical%2Dalign%3A%20middle%3B%0A%20%20visibility%3A%20hidden%3B%0A%7D%0A%0Ah1%3Ahover%20%2Eanchor%2C%0Ah2%3Ahover%20%2Eanchor%2C%0Ah3%3Ahover%20%2Eanchor%2C%0Ah4%3Ahover%20%2Eanchor%2C%0Ah5%3Ahover%20%2Eanchor%2C%0Ah6%3Ahover%20%2Eanchor%20%7B%0A%20%20text%2Ddecoration%3A%20none%3B%0A%7D%0A%0Ah1%3Ahover%20%2Eanchor%20%2Eocticon%2Dlink%2C%0Ah2%3Ahover%20%2Eanchor%20%2Eocticon%2Dlink%2C%0Ah3%3Ahover%20%2Eanchor%20%2Eocticon%2Dlink%2C%0Ah4%3Ahover%20%2Eanchor%20%2Eocticon%2Dlink%2C%0Ah5%3Ahover%20%2Eanchor%20%2Eocticon%2Dlink%2C%0Ah6%3Ahover%20%2Eanchor%20%2Eocticon%2Dlink%20%7B%0A%20%20visibility%3A%20visible%3B%0A%7D%0A%0Ah1%20%7B%0A%20%20padding%2Dbottom%3A%200%2E3em%3B%0A%20%20font%2Dsize%3A%202%2E25em%3B%0A%20%20line%2Dheight%3A%201%2E2%3B%0A%20%20border%2Dbottom%3A%201px%20solid%20%23eee%3B%0A%7D%0A%0Ah1%20%2Eanchor%20%7B%0A%20%20line%2Dheight%3A%201%3B%0A%7D%0A%0Ah2%20%7B%0A%20%20padding%2Dbottom%3A%200%2E3em%3B%0A%20%20font%2Dsize%3A%201%2E75em%3B%0A%20%20line%2Dheight%3A%201%2E225%3B%0A%20%20border%2Dbottom%3A%201px%20solid%20%23eee%3B%0A%7D%0A%0Ah2%20%2Eanchor%20%7B%0A%20%20line%2Dheight%3A%201%3B%0A%7D%0A%0Ah3%20%7B%0A%20%20font%2Dsize%3A%201%2E5em%3B%0A%20%20line%2Dheight%3A%201%2E43%3B%0A%7D%0A%0Ah3%20%2Eanchor%20%7B%0A%20%20line%2Dheight%3A%201%2E2%3B%0A%7D%0A%0Ah4%20%7B%0A%20%20font%2Dsize%3A%201%2E25em%3B%0A%7D%0A%0Ah4%20%2Eanchor%20%7B%0A%20%20line%2Dheight%3A%201%2E2%3B%0A%7D%0A%0Ah5%20%7B%0A%20%20font%2Dsize%3A%201em%3B%0A%7D%0A%0Ah5%20%2Eanchor%20%7B%0A%20%20line%2Dheight%3A%201%2E1%3B%0A%7D%0A%0Ah6%20%7B%0A%20%20font%2Dsize%3A%201em%3B%0A%20%20color%3A%20%23777%3B%0A%7D%0A%0Ah6%20%2Eanchor%20%7B%0A%20%20line%2Dheight%3A%201%2E1%3B%0A%7D%0A%0Ap%2C%0Ablockquote%2C%0Aul%2C%0Aol%2C%0Adl%2C%0Atable%2C%0Apre%20%7B%0A%20%20margin%2Dtop%3A%200%3B%0A%20%20margin%2Dbottom%3A%2016px%3B%0A%7D%0A%0Ahr%20%7B%0A%20%20height%3A%204px%3B%0A%20%20padding%3A%200%3B%0A%20%20margin%3A%2016px%200%3B%0A%20%20background%2Dcolor%3A%20%23e7e7e7%3B%0A%20%20border%3A%200%20none%3B%0A%7D%0A%0Aul%2C%0Aol%20%7B%0A%20%20padding%2Dleft%3A%202em%3B%0A%7D%0A%0Aul%20ul%2C%0Aul%20ol%2C%0Aol%20ol%2C%0Aol%20ul%20%7B%0A%20%20margin%2Dtop%3A%200%3B%0A%20%20margin%2Dbottom%3A%200%3B%0A%7D%0A%0Ali%3Ep%20%7B%0A%20%20margin%2Dtop%3A%2016px%3B%0A%7D%0A%0Adl%20%7B%0A%20%20padding%3A%200%3B%0A%7D%0A%0Adl%20dt%20%7B%0A%20%20padding%3A%200%3B%0A%20%20margin%2Dtop%3A%2016px%3B%0A%20%20font%2Dsize%3A%201em%3B%0A%20%20font%2Dstyle%3A%20italic%3B%0A%20%20font%2Dweight%3A%20bold%3B%0A%7D%0A%0Adl%20dd%20%7B%0A%20%20padding%3A%200%2016px%3B%0A%20%20margin%2Dbottom%3A%2016px%3B%0A%7D%0A%0Ablockquote%20%7B%0A%20%20padding%3A%200%2015px%3B%0A%20%20color%3A%20%23777%3B%0A%20%20border%2Dleft%3A%204px%20solid%20%23ddd%3B%0A%7D%0A%0Ablockquote%3E%3Afirst%2Dchild%20%7B%0A%20%20margin%2Dtop%3A%200%3B%0A%7D%0A%0Ablockquote%3E%3Alast%2Dchild%20%7B%0A%20%20margin%2Dbottom%3A%200%3B%0A%7D%0A%0Atable%20%7B%0A%20%20display%3A%20block%3B%0A%20%20width%3A%20100%25%3B%0A%20%20overflow%3A%20auto%3B%0A%20%20word%2Dbreak%3A%20normal%3B%0A%20%20word%2Dbreak%3A%20keep%2Dall%3B%0A%7D%0A%0Atable%20th%20%7B%0A%20%20font%2Dweight%3A%20bold%3B%0A%7D%0A%0Atable%20th%2C%0Atable%20td%20%7B%0A%20%20padding%3A%206px%2013px%3B%0A%20%20border%3A%201px%20solid%20%23ddd%3B%0A%7D%0A%0Atable%20tr%20%7B%0A%20%20background%2Dcolor%3A%20%23fff%3B%0A%20%20border%2Dtop%3A%201px%20solid%20%23ccc%3B%0A%7D%0A%0Atable%20tr%3Anth%2Dchild%282n%29%20%7B%0A%20%20background%2Dcolor%3A%20%23f8f8f8%3B%0A%7D%0A%0Aimg%20%7B%0A%20%20max%2Dwidth%3A%20100%25%3B%0A%20%20box%2Dsizing%3A%20content%2Dbox%3B%0A%20%20background%2Dcolor%3A%20%23fff%3B%0A%7D%0A%0Acode%20%7B%0A%20%20padding%3A%200%3B%0A%20%20padding%2Dtop%3A%200%2E2em%3B%0A%20%20padding%2Dbottom%3A%200%2E2em%3B%0A%20%20margin%3A%200%3B%0A%20%20font%2Dsize%3A%2085%25%3B%0A%20%20background%2Dcolor%3A%20rgba%280%2C0%2C0%2C0%2E04%29%3B%0A%20%20border%2Dradius%3A%203px%3B%0A%7D%0A%0Acode%3Abefore%2C%0Acode%3Aafter%20%7B%0A%20%20letter%2Dspacing%3A%20%2D0%2E2em%3B%0A%20%20content%3A%20%22%5C00a0%22%3B%0A%7D%0A%0Apre%3Ecode%20%7B%0A%20%20padding%3A%200%3B%0A%20%20margin%3A%200%3B%0A%20%20font%2Dsize%3A%20100%25%3B%0A%20%20word%2Dbreak%3A%20normal%3B%0A%20%20white%2Dspace%3A%20pre%3B%0A%20%20background%3A%20transparent%3B%0A%20%20border%3A%200%3B%0A%7D%0A%0A%2Ehighlight%20%7B%0A%20%20margin%2Dbottom%3A%2016px%3B%0A%7D%0A%0A%2Ehighlight%20pre%2C%0Apre%20%7B%0A%20%20padding%3A%2016px%3B%0A%20%20overflow%3A%20auto%3B%0A%20%20font%2Dsize%3A%2085%25%3B%0A%20%20line%2Dheight%3A%201%2E45%3B%0A%20%20background%2Dcolor%3A%20%23f7f7f7%3B%0A%20%20border%2Dradius%3A%203px%3B%0A%7D%0A%0A%2Ehighlight%20pre%20%7B%0A%20%20margin%2Dbottom%3A%200%3B%0A%20%20word%2Dbreak%3A%20normal%3B%0A%7D%0A%0Apre%20%7B%0A%20%20word%2Dwrap%3A%20normal%3B%0A%7D%0A%0Apre%20code%20%7B%0A%20%20display%3A%20inline%3B%0A%20%20max%2Dwidth%3A%20initial%3B%0A%20%20padding%3A%200%3B%0A%20%20margin%3A%200%3B%0A%20%20overflow%3A%20initial%3B%0A%20%20line%2Dheight%3A%20inherit%3B%0A%20%20word%2Dwrap%3A%20normal%3B%0A%20%20background%2Dcolor%3A%20transparent%3B%0A%20%20border%3A%200%3B%0A%7D%0A%0Apre%20code%3Abefore%2C%0Apre%20code%3Aafter%20%7B%0A%20%20content%3A%20normal%3B%0A%7D%0A%0Akbd%20%7B%0A%20%20display%3A%20inline%2Dblock%3B%0A%20%20padding%3A%203px%205px%3B%0A%20%20font%2Dsize%3A%2011px%3B%0A%20%20line%2Dheight%3A%2010px%3B%0A%20%20color%3A%20%23555%3B%0A%20%20vertical%2Dalign%3A%20middle%3B%0A%20%20background%2Dcolor%3A%20%23fcfcfc%3B%0A%20%20border%3A%20solid%201px%20%23ccc%3B%0A%20%20border%2Dbottom%2Dcolor%3A%20%23bbb%3B%0A%20%20border%2Dradius%3A%203px%3B%0A%20%20box%2Dshadow%3A%20inset%200%20%2D1px%200%20%23bbb%3B%0A%7D%0A%0A%2Epl%2Dc%20%7B%0A%20%20color%3A%20%23969896%3B%0A%7D%0A%0A%2Epl%2Dc1%2C%0A%2Epl%2Ds%20%2Epl%2Dv%20%7B%0A%20%20color%3A%20%230086b3%3B%0A%7D%0A%0A%2Epl%2De%2C%0A%2Epl%2Den%20%7B%0A%20%20color%3A%20%23795da3%3B%0A%7D%0A%0A%2Epl%2Ds%20%2Epl%2Ds1%2C%0A%2Epl%2Dsmi%20%7B%0A%20%20color%3A%20%23333%3B%0A%7D%0A%0A%2Epl%2Dent%20%7B%0A%20%20color%3A%20%2363a35c%3B%0A%7D%0A%0A%2Epl%2Dk%20%7B%0A%20%20color%3A%20%23a71d5d%3B%0A%7D%0A%0A%2Epl%2Dpds%2C%0A%2Epl%2Ds%2C%0A%2Epl%2Ds%20%2Epl%2Dpse%20%2Epl%2Ds1%2C%0A%2Epl%2Dsr%2C%0A%2Epl%2Dsr%20%2Epl%2Dcce%2C%0A%2Epl%2Dsr%20%2Epl%2Dsra%2C%0A%2Epl%2Dsr%20%2Epl%2Dsre%20%7B%0A%20%20color%3A%20%23183691%3B%0A%7D%0A%0A%2Epl%2Dv%20%7B%0A%20%20color%3A%20%23ed6a43%3B%0A%7D%0A%0A%2Epl%2Did%20%7B%0A%20%20color%3A%20%23b52a1d%3B%0A%7D%0A%0A%2Epl%2Dii%20%7B%0A%20%20background%2Dcolor%3A%20%23b52a1d%3B%0A%20%20color%3A%20%23f8f8f8%3B%0A%7D%0A%0A%2Epl%2Dsr%20%2Epl%2Dcce%20%7B%0A%20%20color%3A%20%2363a35c%3B%0A%20%20font%2Dweight%3A%20bold%3B%0A%7D%0A%0A%2Epl%2Dml%20%7B%0A%20%20color%3A%20%23693a17%3B%0A%7D%0A%0A%2Epl%2Dmh%2C%0A%2Epl%2Dmh%20%2Epl%2Den%2C%0A%2Epl%2Dms%20%7B%0A%20%20color%3A%20%231d3e81%3B%0A%20%20font%2Dweight%3A%20bold%3B%0A%7D%0A%0A%2Epl%2Dmq%20%7B%0A%20%20color%3A%20%23008080%3B%0A%7D%0A%0A%2Epl%2Dmi%20%7B%0A%20%20color%3A%20%23333%3B%0A%20%20font%2Dstyle%3A%20italic%3B%0A%7D%0A%0A%2Epl%2Dmb%20%7B%0A%20%20color%3A%20%23333%3B%0A%20%20font%2Dweight%3A%20bold%3B%0A%7D%0A%0A%2Epl%2Dmd%20%7B%0A%20%20background%2Dcolor%3A%20%23ffecec%3B%0A%20%20color%3A%20%23bd2c00%3B%0A%7D%0A%0A%2Epl%2Dmi1%20%7B%0A%20%20background%2Dcolor%3A%20%23eaffea%3B%0A%20%20color%3A%20%2355a532%3B%0A%7D%0A%0A%2Epl%2Dmdr%20%7B%0A%20%20color%3A%20%23795da3%3B%0A%20%20font%2Dweight%3A%20bold%3B%0A%7D%0A%0A%2Epl%2Dmo%20%7B%0A%20%20color%3A%20%231d3e81%3B%0A%7D%0A%0Akbd%20%7B%0A%20%20display%3A%20inline%2Dblock%3B%0A%20%20padding%3A%203px%205px%3B%0A%20%20font%3A%2011px%20Consolas%2C%20%22Liberation%20Mono%22%2C%20Menlo%2C%20Courier%2C%20monospace%3B%0A%20%20line%2Dheight%3A%2010px%3B%0A%20%20color%3A%20%23555%3B%0A%20%20vertical%2Dalign%3A%20middle%3B%0A%20%20background%2Dcolor%3A%20%23fcfcfc%3B%0A%20%20border%3A%20solid%201px%20%23ccc%3B%0A%20%20border%2Dbottom%2Dcolor%3A%20%23bbb%3B%0A%20%20border%2Dradius%3A%203px%3B%0A%20%20box%2Dshadow%3A%20inset%200%20%2D1px%200%20%23bbb%3B%0A%7D%0A%0A%2Etask%2Dlist%2Ditem%20%7B%0A%20%20list%2Dstyle%2Dtype%3A%20none%3B%0A%7D%0A%0A%2Etask%2Dlist%2Ditem%2B%2Etask%2Dlist%2Ditem%20%7B%0A%20%20margin%2Dtop%3A%203px%3B%0A%7D%0A%0A%2Etask%2Dlist%2Ditem%20input%20%7B%0A%20%20margin%3A%200%200%2E35em%200%2E25em%20%2D1%2E6em%3B%0A%20%20vertical%2Dalign%3A%20middle%3B%0A%7D%0A%0A%3Achecked%2B%2Eradio%2Dlabel%20%7B%0A%20%20z%2Dindex%3A%201%3B%0A%20%20position%3A%20relative%3B%0A%20%20border%2Dcolor%3A%20%234078c0%3B%0A%7D%0A%0A%0Acode%20%3E%20%2Ekw%20%7B%20color%3A%20%23000000%3B%20%7D%0Acode%20%3E%20%2Edt%20%7B%20color%3A%20%23ed6a43%3B%20%7D%0Acode%20%3E%20%2Edv%20%7B%20color%3A%20%23009999%3B%20%7D%0Acode%20%3E%20%2Ebn%20%7B%20color%3A%20%23009999%3B%20%7D%0Acode%20%3E%20%2Efl%20%7B%20color%3A%20%23009999%3B%20%7D%0Acode%20%3E%20%2Ech%20%7B%20color%3A%20%23009999%3B%20%7D%0Acode%20%3E%20%2Est%20%7B%20color%3A%20%23183691%3B%20%7D%0Acode%20%3E%20%2Eco%20%7B%20color%3A%20%23969896%3B%20%7D%0Acode%20%3E%20%2Eot%20%7B%20color%3A%20%230086b3%3B%20%7D%0Acode%20%3E%20%2Eal%20%7B%20color%3A%20%23a61717%3B%20%7D%0Acode%20%3E%20%2Efu%20%7B%20color%3A%20%2363a35c%3B%20%20%7D%0Acode%20%3E%20%2Eer%20%7B%20color%3A%20%23a61717%3B%20background%2Dcolor%3A%20%23e3d2d2%3B%20%7D%0Acode%20%3E%20%2Ewa%20%7B%20color%3A%20%23000000%3B%20%7D%0Acode%20%3E%20%2Ecn%20%7B%20color%3A%20%23008080%3B%20%20%7D%0Acode%20%3E%20%2Esc%20%7B%20color%3A%20%23008080%3B%20%7D%0Acode%20%3E%20%2Evs%20%7B%20color%3A%20%23183691%3B%20%7D%0Acode%20%3E%20%2Ess%20%7B%20color%3A%20%23183691%3B%20%7D%0Acode%20%3E%20%2Eim%20%7B%20color%3A%20%23000000%3B%20%7D%0Acode%20%3E%20%2Eva%20%7Bcolor%3A%20%23008080%3B%20%7D%0Acode%20%3E%20%2Ecf%20%7B%20color%3A%20%23000000%3B%20%20%7D%0Acode%20%3E%20%2Eop%20%7B%20color%3A%20%23000000%3B%20%7D%0Acode%20%3E%20%2Ebu%20%7B%20color%3A%20%23000000%3B%20%7D%0Acode%20%3E%20%2Eex%20%7B%20color%3A%20%23000000%3B%20%7D%0Acode%20%3E%20%2Epp%20%7B%20color%3A%20%23999999%3B%20%7D%0Acode%20%3E%20%2Eat%20%7B%20color%3A%20%23008080%3B%20%7D%0Acode%20%3E%20%2Edo%20%7B%20color%3A%20%23969896%3B%20%7D%0Acode%20%3E%20%2Ean%20%7B%20color%3A%20%23008080%3B%20%7D%0Acode%20%3E%20%2Ecv%20%7B%20color%3A%20%23008080%3B%20%7D%0Acode%20%3E%20%2Ein%20%7B%20color%3A%20%23008080%3B%20%7D%0A" rel="stylesheet">
<style>
body {
box-sizing: border-box;
min-width: 200px;
max-width: 980px;
margin: 0 auto;
padding: 45px;
padding-top: 0px;
}
</style>
</head>
<body>
<h1 id="chapter-3---bayesian-statistics---exercises-5-6">Chapter 3 - Bayesian Statistics - Exercises 5 & 6</h1>
<p>Daniel Piqué<br />2016-09-05</p>
<h3 id="test-of-a-proportion">5. Test of a proportion</h3>
<ul>
<li>In the standard Rhine test of extra-sensory perception (ESP), a set of cards is used where each card has a circle, a square, wavy lines, a cross, or a star. A card is selected at random from the deck, and a person tries to guess the symbol on the card. This experiment is repeated 20 times, and the number of correct guesses y is recorded. Let p denote the probability that the person makes a correct guess, where p = .2 if the person does not have ESP and is just guessing at the card symbol. To see if the person truly has some ESP, we would like to test the hypothesis H : p = .2.</li>
</ul>
<h4 id="a-if-the-person-identifies-y-8-cards-correctly-compute-the-p-value.">A) If the person identifies y = 8 cards correctly, compute the p-value.</h4>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">library</span>(LearnBayes)
<span class="co">#HO: p = 0.2</span>
<span class="co">#HA: p != 0.2</span>
<span class="co">#We are dealing with a binomial distribution (ie a certain number of successes)</span>
<span class="co">#y = 8 successes</span>
<span class="dv">1</span> -<span class="st"> </span><span class="kw">pbinom</span>(<span class="dv">8</span>, <span class="dv">20</span>, <span class="fl">0.2</span>)</code></pre>
<pre><code>## [1] 0.009981786</code></pre>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">plot</span>(<span class="dv">1</span>:<span class="dv">20</span>, <span class="dv">1</span>-<span class="kw">pbinom</span>(<span class="dv">1</span>:<span class="dv">20</span>, <span class="dv">20</span>, <span class="fl">0.2</span>), <span class="dt">xlab =</span> <span class="st">"Number of correct guesses"</span>, <span class="dt">ylab =</span> <span class="st">"p-value"</span>, <span class="dt">main=</span> <span class="st">"P-values for ESP hypothesis testing </span><span class="ch">\n</span><span class="st"> by the number of correct guesses"</span>)
<span class="kw">abline</span>(<span class="dt">v =</span> <span class="dv">8</span>,<span class="dt">lty=</span><span class="dv">2</span>, <span class="dt">col=</span> <span class="st">'red'</span>)
<span class="kw">text</span>(<span class="dt">x =</span> <span class="dv">13</span>, <span class="fl">0.2</span>, <span class="dt">labels =</span> <span class="st">"p-value for the scenario </span><span class="ch">\n</span><span class="st"> with 8 correct guesses"</span>)</code></pre>
<p><img src="" /></p>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">plot</span>(<span class="dv">0</span>:<span class="dv">20</span>, <span class="kw">dbinom</span>(<span class="dv">0</span>:<span class="dv">20</span>, <span class="dv">20</span>, <span class="fl">0.2</span>), <span class="dt">xlab=</span> <span class="st">"Number of Correct Guesses"</span>, <span class="dt">ylab =</span> <span class="st">"Probability Density"</span>)</code></pre>
<p><img src="" /></p>
<h4 id="b-suppose-you-believe-a-priori-that-the-probability-that-p-.2-is-.5-and-if-p-.2-you-assign-a-beta1-4-prior-on-the-proportion.-using-the-function-pbetat-compute-the-posterior-probability-of-the-hypothesis-h.-compare-your-answer-with-the-p-value-computed-in-part-a.">B) Suppose you believe a priori that the probability that p = .2 is .5 and if p != .2 you assign a beta(1, 4) prior on the proportion. Using the function pbetat, compute the posterior probability of the hypothesis H. Compare your answer with the p-value computed in part (a).</h4>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">pbetat</span>(.<span class="dv">2</span>, .<span class="dv">5</span>, <span class="kw">c</span>(<span class="dv">1</span>,<span class="dv">4</span>), <span class="kw">c</span>(<span class="dv">8</span>,<span class="dv">12</span>))</code></pre>
<pre><code>## $bf
## [1] 0.5175417
##
## $post
## [1] 0.3410395</code></pre>
<pre class="sourceCode r"><code class="sourceCode r"><span class="co">#$bf [1] 0.5175417 (Bayes Factor, in support of the null)</span>
<span class="co">#$post [1] 0.3410395 (posterior probability of null)</span>
<span class="co">#p=0.34 is much higher than that derived from the binomial. Basically, under the Bayesian framework, we are more skeptial about rejecting the null hypothesis that there is no ESP than under the frequentist framework.</span>
### pbetat function ###
<span class="co">#function (p0, prob, ab, data) </span>
<span class="co">#{</span>
<span class="co"># a = ab[1]</span>
<span class="co"># b = ab[2]</span>
<span class="co"># s = data[1]</span>
<span class="co"># f = data[2]</span>
<span class="co"># lbf = s * log(p0) + f * log(1 - p0) + lbeta(a, b) - lbeta(a + </span>
<span class="co"># s, b + f)</span>
<span class="co"># bf = exp(lbf)</span>
<span class="co"># post = prob * bf/(prob * bf + 1 - prob)</span>
<span class="co"># return(list(bf = bf, post = post))</span>
<span class="co">#}</span></code></pre>
<h4 id="c-the-posterior-probability-computed-in-part-b-depended-on-your-belief-about-plausible-values-of-the-proportion-p-when-p-.2.-for-each-of-the-following-priors-compute-the-posterior-probability-of-h-1-p-beta.5-2-2-p-beta2-8-3-p-beta8-32.">C) The posterior probability computed in part (b) depended on your belief about plausible values of the proportion p when p != .2. For each of the following priors, compute the posterior probability of H: (1) p ∼ beta(.5, 2), (2) p ∼ beta(2, 8), (3) p ∼ beta(8, 32).</h4>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">pbetat</span>(.<span class="dv">2</span>, .<span class="dv">5</span>, <span class="kw">c</span>(<span class="fl">0.5</span>,<span class="dv">2</span>), <span class="kw">c</span>(<span class="dv">8</span>,<span class="dv">12</span>)) <span class="co">#[1] 0.3900752</span></code></pre>
<pre><code>## $bf
## [1] 0.6395464
##
## $post
## [1] 0.3900752</code></pre>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">pbetat</span>(.<span class="dv">2</span>, .<span class="dv">5</span>, <span class="kw">c</span>(<span class="dv">2</span>,<span class="dv">8</span>), <span class="kw">c</span>(<span class="dv">8</span>,<span class="dv">12</span>)) <span class="co">#0.328591</span></code></pre>
<pre><code>## $bf
## [1] 0.4894051
##
## $post
## [1] 0.328591</code></pre>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">pbetat</span>(.<span class="dv">2</span>, .<span class="dv">5</span>, <span class="kw">c</span>(<span class="dv">8</span>,<span class="dv">32</span>), <span class="kw">c</span>(<span class="dv">8</span>,<span class="dv">12</span>)) <span class="co">#0.3855337</span></code></pre>
<pre><code>## $bf
## [1] 0.6274287
##
## $post
## [1] 0.3855337</code></pre>
<pre class="sourceCode r"><code class="sourceCode r"><span class="co">#show the 4 different beta distributions</span>
<span class="kw">par</span>(<span class="dt">mfrow=</span><span class="kw">c</span>(<span class="dv">2</span>,<span class="dv">2</span>))
x <-<span class="st"> </span><span class="kw">seq</span>(<span class="dv">0</span>, <span class="dv">1</span>, <span class="dt">by =</span> <span class="fl">0.01</span>)
<span class="kw">plot</span>(x, <span class="kw">dbeta</span>(x, <span class="dt">shape1 =</span> <span class="dv">1</span>, <span class="dt">shape2 =</span> <span class="dv">4</span>), <span class="dt">type=</span><span class="st">"l"</span>, <span class="dt">lty=</span><span class="dv">1</span>, <span class="dt">xlab=</span><span class="st">""</span>, <span class="dt">ylab=</span><span class="st">"Density"</span>, <span class="dt">main=</span><span class="st">"Beta(1,4) Distribution"</span>)
<span class="kw">plot</span>(x, <span class="kw">dbeta</span>(x, <span class="dt">shape1 =</span> <span class="fl">0.5</span>, <span class="dt">shape2 =</span> <span class="dv">2</span>), <span class="dt">type=</span><span class="st">"l"</span>, <span class="dt">lty=</span><span class="dv">1</span>, <span class="dt">xlab=</span><span class="st">""</span>, <span class="dt">ylab=</span><span class="st">"Density"</span>, <span class="dt">main=</span><span class="st">"Beta(0.5,2) Distribution"</span>)
<span class="kw">plot</span>(x, <span class="kw">dbeta</span>(x, <span class="dt">shape1 =</span> <span class="dv">2</span>, <span class="dt">shape2 =</span> <span class="dv">8</span>), <span class="dt">type=</span><span class="st">"l"</span>, <span class="dt">lty=</span><span class="dv">1</span>, <span class="dt">xlab=</span><span class="st">""</span>, <span class="dt">ylab=</span><span class="st">"Density"</span>, <span class="dt">main=</span><span class="st">"Beta(2,8) Distribution"</span>)
<span class="kw">plot</span>(x, <span class="kw">dbeta</span>(x, <span class="dt">shape1 =</span> <span class="dv">8</span>, <span class="dt">shape2 =</span> <span class="dv">32</span>), <span class="dt">type=</span><span class="st">"l"</span>, <span class="dt">lty=</span><span class="dv">1</span>, <span class="dt">xlab=</span><span class="st">""</span>, <span class="dt">ylab=</span><span class="st">"Density"</span>, <span class="dt">main=</span><span class="st">"Beta(8,32) Distribution"</span>)</code></pre>
<p><img src="" /></p>
<h4 id="d-on-the-basis-of-your-bayesian-computations-do-you-think-that-y-8-is-convincing-evidence-that-the-person-really-has-some-esp-explain.">D) On the basis of your Bayesian computations, do you think that y =8 is convincing evidence that the person really has some ESP? Explain.</h4>
<ul>
<li>No. Given a sensible prior with the probability density centered around the null hypothesis that the proportion of correct guesses equals 0.2, I wouldn't expect this person to have ESP.</li>
</ul>
<pre class="sourceCode r"><code class="sourceCode r"><span class="co">#robustness to different values of alpha</span>
postGrid <-<span class="st"> </span><span class="kw">matrix</span>(<span class="ot">NA</span>, <span class="dt">nrow =</span> <span class="dv">100</span>, <span class="dt">ncol=</span><span class="dv">100</span>)
<span class="kw">colnames</span>(postGrid) <-<span class="st"> </span><span class="dv">1</span>:<span class="dv">100</span>
<span class="kw">rownames</span>(postGrid) <-<span class="st"> </span><span class="dv">1</span>:<span class="dv">100</span>
for(i in <span class="kw">seq</span>(<span class="dv">1</span>, <span class="dv">100</span>, <span class="dt">by=</span><span class="dv">1</span>)){
for (j in <span class="kw">seq</span>(<span class="dv">1</span>,<span class="dv">100</span>, <span class="dt">by=</span><span class="dv">1</span>)){
post <-<span class="st"> </span><span class="kw">unlist</span>(<span class="kw">pbetat</span>(.<span class="dv">2</span>, .<span class="dv">5</span>, <span class="kw">c</span>(i,j), <span class="kw">c</span>(<span class="dv">8</span>,<span class="dv">12</span>))[<span class="dv">2</span>])
postGrid[i, j] <-<span class="st"> </span>post
}
}
<span class="kw">library</span>(gplots)
<span class="kw">heatmap.2</span>(postGrid, <span class="dt">dendrogram=</span><span class="st">'none'</span>, <span class="dt">Rowv=</span><span class="ot">FALSE</span>, <span class="dt">Colv=</span><span class="ot">FALSE</span>,<span class="dt">trace=</span><span class="st">'none'</span>, , <span class="dt">xlab =</span> <span class="st">"beta"</span>, <span class="dt">ylab =</span> <span class="st">"alpha"</span>)</code></pre>
<p><img src="" /></p>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">min</span>(postGrid)</code></pre>
<pre><code>## [1] 0.1154475</code></pre>
<h3 id="suppose-you-drive-on-a-particular-interstate-roadway-and-typically-drive-at-a-constant-speed-of-70-mph.-one-day-you-pass-one-car-and-get-passed-by-17-cars.-suppose-that-the-speeds-are-normally-distributed-with-unknown-mean-mu-and-standard-deviation--10.-if-you-pass-s-cars-and-f-cars-pass-you-the-likelihood-of-mu-is-given-by">6. Suppose you drive on a particular interstate roadway and typically drive at a constant speed of 70 mph. One day, you pass one car and get passed by 17 cars. Suppose that the speeds are normally distributed with unknown mean mu and standard deviation σ = 10. If you pass s cars and f cars pass you, the likelihood of mu is given by</h3>
<p>L(mu) ∝ Φ(70,mu,σ)^s * (1 − Φ(70,mu,σ))^f, ### where Φ(y, mu, σ) is the cdf of the normal distribution with mean mu and standard deviation σ. Assign the unknown mean mu a flat prior density.</p>
<h4 id="a-if-s-1-and-f-17-plot-the-posterior-density-of-mu.">A) If s = 1 and f = 17, plot the posterior density of mu.</h4>
<pre class="sourceCode r"><code class="sourceCode r">s=<span class="dv">1</span>
f=<span class="dv">17</span>
sigma=<span class="dv">10</span>
x =<span class="st"> </span><span class="kw">seq</span>(<span class="dv">0</span>,<span class="dv">1</span>,<span class="dt">length=</span><span class="dv">200</span>)
prior =<span class="st"> </span><span class="kw">dbeta</span>(x,<span class="dv">1</span> ,<span class="dv">1</span>)
mu=<span class="dv">1</span>:<span class="dv">200</span>
likelihood =<span class="st"> </span><span class="kw">pnorm</span>(<span class="dv">70</span>, mu, sigma)^s *<span class="st"> </span>(<span class="dv">1</span> -<span class="st"> </span><span class="kw">pnorm</span>(<span class="dv">70</span>, mu, sigma))^f
posterior =<span class="st"> </span>prior*likelihood/<span class="kw">sum</span>(prior*likelihood)
<span class="kw">plot</span>(mu, posterior, <span class="dt">type =</span> <span class="st">'l'</span>, <span class="dt">ylab =</span> <span class="st">"posterior"</span>, <span class="dt">main =</span> <span class="st">"Posterior Density of mu"</span>)</code></pre>
<p><img src="" /></p>
<ol>
<li>Using the density found in part (a), find the posterior mean of mu.</li>
</ol>
<pre class="sourceCode r"><code class="sourceCode r"><span class="co">#how to find the posterior mean? Get a weighted average of all your points.</span>
<span class="kw">sum</span>(mu *<span class="st"> </span>posterior) <span class="co">#87.11109</span></code></pre>
<pre><code>## [1] 87.11109</code></pre>
<ol>
<li>Find the probability that the average speed of the cars on this interstate roadway exceeds 80 mph.</li>
</ol>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">sum</span>(posterior[<span class="dv">80</span>:<span class="dv">200</span>]) <span class="co">#probability that average speed exceeds 80 mph</span></code></pre>
<pre><code>## [1] 0.9468573</code></pre>
<pre class="sourceCode r"><code class="sourceCode r">like <-<span class="st"> </span>function(mu, sigma, s,f){
likelihood =<span class="st"> </span><span class="kw">pnorm</span>(<span class="dv">70</span>, mu, sigma)^s *<span class="st"> </span>(<span class="dv">1</span> -<span class="st"> </span><span class="kw">pnorm</span>(<span class="dv">70</span>, mu, sigma))^f
}
cord.x <-<span class="st"> </span><span class="kw">c</span>(<span class="dv">80</span>,<span class="kw">seq</span>(<span class="dv">80</span>,<span class="dv">200</span>,<span class="fl">0.01</span>),<span class="dv">200</span>)
cord.y <-<span class="st"> </span><span class="kw">c</span>(<span class="dv">0</span>,<span class="kw">like</span>(<span class="kw">seq</span>(<span class="dv">80</span>,<span class="dv">200</span>,<span class="fl">0.01</span>), sigma, s, f),<span class="dv">0</span>)
<span class="kw">curve</span>(<span class="kw">like</span>(x, sigma, s, f), <span class="dt">xlim=</span><span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">200</span>), <span class="dt">xlab =</span> <span class="st">"mu (Avg. Speed)"</span>, <span class="dt">ylab =</span> <span class="st">"posterior probability"</span>, <span class="dt">main =</span> <span class="st">"Posterior Density of mu (Avg. Speed)"</span>)
<span class="kw">polygon</span>(cord.x,cord.y,<span class="dt">col=</span><span class="st">'skyblue'</span>)</code></pre>
<p><img src="" /></p>
</body>
</html>