forked from tensorpack/tensorpack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresnet_model.py
136 lines (109 loc) · 5.62 KB
/
resnet_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# -*- coding: utf-8 -*-
# File: resnet_model.py
import tensorflow as tf
from tensorpack.models import BatchNorm, BNReLU, Conv2D, FullyConnected, GlobalAvgPooling, MaxPooling
from tensorpack.tfutils.argscope import argscope, get_arg_scope
def resnet_shortcut(l, n_out, stride, activation=tf.identity):
data_format = get_arg_scope()['Conv2D']['data_format']
n_in = l.get_shape().as_list()[1 if data_format in ['NCHW', 'channels_first'] else 3]
if n_in != n_out: # change dimension when channel is not the same
return Conv2D('convshortcut', l, n_out, 1, strides=stride, activation=activation)
else:
return l
def apply_preactivation(l, preact):
if preact == 'bnrelu':
shortcut = l # preserve identity mapping
l = BNReLU('preact', l)
else:
shortcut = l
return l, shortcut
def get_bn(zero_init=False):
"""
Zero init gamma is good for resnet. See https://arxiv.org/abs/1706.02677.
"""
if zero_init:
return lambda x, name=None: BatchNorm('bn', x, gamma_initializer=tf.zeros_initializer())
else:
return lambda x, name=None: BatchNorm('bn', x)
def preresnet_basicblock(l, ch_out, stride, preact):
l, shortcut = apply_preactivation(l, preact)
l = Conv2D('conv1', l, ch_out, 3, strides=stride, activation=BNReLU)
l = Conv2D('conv2', l, ch_out, 3)
return l + resnet_shortcut(shortcut, ch_out, stride)
def preresnet_bottleneck(l, ch_out, stride, preact):
# stride is applied on the second conv, following fb.resnet.torch
l, shortcut = apply_preactivation(l, preact)
l = Conv2D('conv1', l, ch_out, 1, activation=BNReLU)
l = Conv2D('conv2', l, ch_out, 3, strides=stride, activation=BNReLU)
l = Conv2D('conv3', l, ch_out * 4, 1)
return l + resnet_shortcut(shortcut, ch_out * 4, stride)
def preresnet_group(name, l, block_func, features, count, stride):
with tf.variable_scope(name):
for i in range(0, count):
with tf.variable_scope('block{}'.format(i)):
# first block doesn't need activation
l = block_func(l, features,
stride if i == 0 else 1,
'no_preact' if i == 0 else 'bnrelu')
# end of each group need an extra activation
l = BNReLU('bnlast', l)
return l
def resnet_basicblock(l, ch_out, stride):
shortcut = l
l = Conv2D('conv1', l, ch_out, 3, strides=stride, activation=BNReLU)
l = Conv2D('conv2', l, ch_out, 3, activation=get_bn(zero_init=True))
out = l + resnet_shortcut(shortcut, ch_out, stride, activation=get_bn(zero_init=False))
return tf.nn.relu(out)
def resnet_bottleneck(l, ch_out, stride, stride_first=False):
"""
stride_first: original resnet put stride on first conv. fb.resnet.torch put stride on second conv.
"""
shortcut = l
l = Conv2D('conv1', l, ch_out, 1, strides=stride if stride_first else 1, activation=BNReLU)
l = Conv2D('conv2', l, ch_out, 3, strides=1 if stride_first else stride, activation=BNReLU)
l = Conv2D('conv3', l, ch_out * 4, 1, activation=get_bn(zero_init=True))
out = l + resnet_shortcut(shortcut, ch_out * 4, stride, activation=get_bn(zero_init=False))
return tf.nn.relu(out)
def se_resnet_bottleneck(l, ch_out, stride):
shortcut = l
l = Conv2D('conv1', l, ch_out, 1, activation=BNReLU)
l = Conv2D('conv2', l, ch_out, 3, strides=stride, activation=BNReLU)
l = Conv2D('conv3', l, ch_out * 4, 1, activation=get_bn(zero_init=True))
squeeze = GlobalAvgPooling('gap', l)
squeeze = FullyConnected('fc1', squeeze, ch_out // 4, activation=tf.nn.relu)
squeeze = FullyConnected('fc2', squeeze, ch_out * 4, activation=tf.nn.sigmoid)
data_format = get_arg_scope()['Conv2D']['data_format']
ch_ax = 1 if data_format in ['NCHW', 'channels_first'] else 3
shape = [-1, 1, 1, 1]
shape[ch_ax] = ch_out * 4
l = l * tf.reshape(squeeze, shape)
out = l + resnet_shortcut(shortcut, ch_out * 4, stride, activation=get_bn(zero_init=False))
return tf.nn.relu(out)
def resnext_32x4d_bottleneck(l, ch_out, stride):
shortcut = l
l = Conv2D('conv1', l, ch_out * 2, 1, strides=1, activation=BNReLU)
l = Conv2D('conv2', l, ch_out * 2, 3, strides=stride, activation=BNReLU, split=32)
l = Conv2D('conv3', l, ch_out * 4, 1, activation=get_bn(zero_init=True))
out = l + resnet_shortcut(shortcut, ch_out * 4, stride, activation=get_bn(zero_init=False))
return tf.nn.relu(out)
def resnet_group(name, l, block_func, features, count, stride):
with tf.variable_scope(name):
for i in range(0, count):
with tf.variable_scope('block{}'.format(i)):
l = block_func(l, features, stride if i == 0 else 1)
return l
def resnet_backbone(image, num_blocks, group_func, block_func):
with argscope(Conv2D, use_bias=False,
kernel_initializer=tf.variance_scaling_initializer(scale=2.0, mode='fan_out')):
# Note that this pads the image by [2, 3] instead of [3, 2].
# Similar things happen in later stride=2 layers as well.
l = Conv2D('conv0', image, 64, 7, strides=2, activation=BNReLU)
l = MaxPooling('pool0', l, pool_size=3, strides=2, padding='SAME')
l = group_func('group0', l, block_func, 64, num_blocks[0], 1)
l = group_func('group1', l, block_func, 128, num_blocks[1], 2)
l = group_func('group2', l, block_func, 256, num_blocks[2], 2)
l = group_func('group3', l, block_func, 512, num_blocks[3], 2)
l = GlobalAvgPooling('gap', l)
logits = FullyConnected('linear', l, 1000,
kernel_initializer=tf.random_normal_initializer(stddev=0.01))
return logits