-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathinference-sim.py
248 lines (214 loc) · 16.2 KB
/
inference-sim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import argparse
import os
import time
import logging
import random
import shutil
import time
import collections
import warnings
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
from utils.meters import AverageMeter, accuracy
from pytorch_quantizer.quantization.inference.inference_quantization_manager import QuantizationManagerInference as QM
from utils.log import EvalLog
from utils.absorb_bn import search_absorbe_bn
from utils.dump_manager import DumpManager as DM
from pathlib import Path
torch.backends.cudnn.deterministic = True
home = str(Path.home())
IMAGENET_FOR_INFERENCE = os.path.join(home, 'datasets/ILSVRC2012/')
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
model_names.append('shufflenet')
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('--data', metavar='DIR', default=IMAGENET_FOR_INFERENCE,
help='path to dataset')
parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet18',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: resnet18)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--print-freq', '-p', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('--device', default='cuda',
help='device assignment ("cpu" or "cuda")')
parser.add_argument('--device_ids', default=[0], type=int, nargs='+',
help='device ids assignment (e.g 0 1 2 3')
parser.add_argument('--qtype', default=None, help='data type: bfloat[N], int[N]')
parser.add_argument('--stochastic', '-s', action='store_true', help='Stochastic rounding.', default=False)
parser.add_argument('--hw_scale', '-hs', action='store_true', help='Force scale to be HW compatible', default=False)
parser.add_argument('--preserve_zero', '-pz', action='store_true', help='Preserve zero during quantization', default=False)
parser.add_argument('--eval_precision', '-ep', action='store_true', default=False, help='Evaluate different precisions, to csv.')
parser.add_argument('--threshold', '-th', default='no', help='Threshold for integer quantization: [no, gaus, exp, laplace]')
parser.add_argument('--stats_mode', '-sm', default='no', help='Specify if collect stats, use or not stats: [collect, use, no]')
parser.add_argument('--stats_folder', '-sf', default=None, help='Specify directory of for statistics')
parser.add_argument('--custom_test', '-ct', action='store_true', default=False, help='Perform some custom test.')
parser.add_argument('--dump_dir', '-dd', default=None, help='Directory to dump tensors')
args = parser.parse_args()
if args.arch == 'resnet50':
max_mse_order_id = ['linear0_activation', 'conv52_activation', 'conv49_activation', 'conv46_activation', 'conv43_activation', 'conv2_activation', 'conv25_activation', 'conv5_activation', 'conv1_activation', 'conv3_activation', 'conv9_activation', 'conv50_activation', 'conv12_activation', 'conv6_activation', 'conv13_activation', 'conv51_activation', 'conv44_activation', 'conv48_activation', 'conv22_activation', 'conv8_activation', 'conv41_activation', 'conv29_activation', 'conv26_activation', 'conv19_activation', 'conv47_activation', 'conv40_activation', 'conv32_activation', 'conv45_activation', 'conv38_activation', 'conv18_activation', 'conv35_activation', 'conv37_activation', 'conv21_activation', 'conv16_activation', 'conv34_activation', 'conv28_activation', 'conv4_activation', 'conv31_activation', 'conv11_activation', 'conv27_activation', 'conv15_activation', 'conv14_activation', 'conv42_activation', 'conv17_activation', 'conv20_activation', 'conv10_activation', 'conv24_activation', 'conv23_activation', 'conv30_activation', 'conv39_activation', 'conv7_activation', 'conv36_activation', 'conv33_activation']
if args.arch == 'resnet18':
max_mse_order_id = ['linear0_activation', 'conv19_activation', 'conv4_activation', 'conv17_activation', 'conv1_activation', 'conv2_activation', 'conv3_activation', 'conv7_activation', 'conv12_activation', 'conv8_activation', 'conv6_activation', 'conv9_activation', 'conv11_activation', 'conv14_activation', 'conv13_activation', 'conv18_activation', 'conv16_activation', 'conv15_activation', 'conv5_activation', 'conv10_activation']
elif args.arch == 'vgg16':
max_mse_order_id = ['conv7_activation', 'conv8_activation', 'conv6_activation', 'conv5_activation', 'conv9_activation', 'conv4_activation', 'conv10_activation', 'conv11_activation', 'conv3_activation', 'conv12_activation', 'linear0_activation', 'conv2_activation', 'linear2_activation', 'linear1_activation', 'conv1_activation']
elif args.arch == 'vgg16_bn':
max_mse_order_id = ['linear2_activation', 'linear0_activation', 'linear1_activation', 'conv12_activation', 'conv1_activation', 'conv3_activation', 'conv2_activation', 'conv10_activation', 'conv11_activation', 'conv6_activation', 'conv4_activation', 'conv8_activation', 'conv5_activation', 'conv7_activation', 'conv9_activation']
elif args.arch == 'resnet101':
max_mse_order_id = ['linear0_activation', 'conv103_activation', 'conv100_activation', 'conv97_activation', 'conv94_activation', 'conv2_activation', 'conv3_activation', 'conv25_activation', 'conv1_activation', 'conv102_activation', 'conv13_activation', 'conv95_activation', 'conv9_activation', 'conv99_activation', 'conv101_activation', 'conv22_activation', 'conv8_activation', 'conv26_activation', 'conv98_activation', 'conv12_activation', 'conv96_activation', 'conv19_activation', 'conv91_activation', 'conv21_activation', 'conv92_activation', 'conv88_activation', 'conv18_activation', 'conv85_activation', 'conv82_activation', 'conv86_activation', 'conv56_activation', 'conv59_activation', 'conv89_activation', 'conv67_activation', 'conv4_activation', 'conv27_activation', 'conv83_activation', 'conv14_activation', 'conv5_activation', 'conv11_activation', 'conv53_activation', 'conv16_activation', 'conv6_activation', 'conv62_activation', 'conv64_activation', 'conv77_activation', 'conv47_activation', 'conv50_activation', 'conv68_activation', 'conv79_activation', 'conv65_activation', 'conv80_activation', 'conv61_activation', 'conv73_activation', 'conv76_activation', 'conv55_activation', 'conv32_activation', 'conv58_activation', 'conv71_activation', 'conv46_activation', 'conv49_activation', 'conv70_activation', 'conv74_activation', 'conv15_activation', 'conv24_activation', 'conv44_activation', 'conv41_activation', 'conv43_activation', 'conv52_activation', 'conv40_activation', 'conv31_activation', 'conv93_activation', 'conv23_activation', 'conv38_activation', 'conv20_activation', 'conv17_activation', 'conv90_activation', 'conv87_activation', 'conv35_activation', 'conv37_activation', 'conv84_activation', 'conv81_activation', 'conv10_activation', 'conv78_activation', 'conv34_activation', 'conv60_activation', 'conv63_activation', 'conv69_activation', 'conv7_activation', 'conv29_activation', 'conv51_activation', 'conv54_activation', 'conv75_activation', 'conv66_activation', 'conv72_activation', 'conv48_activation', 'conv57_activation', 'conv28_activation', 'conv33_activation', 'conv45_activation', 'conv42_activation', 'conv39_activation', 'conv36_activation', 'conv30_activation']
elif args.arch == 'inception_v3':
max_mse_order_id = ['conv5_activation', 'conv12_activation', 'conv1_activation', 'conv7_activation', 'conv4_activation', 'conv2_activation', 'conv14_activation', 'conv19_activation', 'conv10_activation', 'conv92_activation', 'conv21_activation', 'conv22_activation', 'conv9_activation', 'conv77_activation', 'conv16_activation', 'conv47_activation', 'conv48_activation', 'conv17_activation', 'conv58_activation', 'conv8_activation', 'conv55_activation', 'conv56_activation', 'conv40_activation', 'conv63_activation', 'conv15_activation', 'conv62_activation', 'conv84_activation', 'conv54_activation', 'conv57_activation', 'conv52_activation', 'conv65_activation', 'conv91_activation', 'conv76_activation', 'conv34_activation', 'conv51_activation', 'conv85_activation', 'conv53_activation', 'conv83_activation', 'conv35_activation', 'conv50_activation', 'conv46_activation', 'conv82_activation', 'conv61_activation', 'conv30_activation', 'conv37_activation', 'conv67_activation', 'conv75_activation', 'conv64_activation', 'conv29_activation', 'conv66_activation', 'conv44_activation', 'conv33_activation', 'conv43_activation', 'conv38_activation', 'conv45_activation', 'conv42_activation', 'conv23_activation', 'conv36_activation', 'conv60_activation', 'conv32_activation', 'conv41_activation', 'conv79_activation', 'conv6_activation', 'conv13_activation', 'conv78_activation', 'conv20_activation', 'conv73_activation', 'conv74_activation', 'conv80_activation', 'conv31_activation', 'conv27_activation', 'conv81_activation', 'conv88_activation', 'conv68_activation', 'conv28_activation', 'conv26_activation', 'conv89_activation', 'conv72_activation', 'conv93_activation', 'conv90_activation', 'conv94_activation', 'conv3_activation', 'conv24_activation', 'conv87_activation', 'conv18_activation', 'conv69_activation', 'conv59_activation', 'conv25_activation', 'conv49_activation', 'linear1_activation', 'conv39_activation', 'conv86_activation', 'conv11_activation', 'conv95_activation']
def main():
global args, best_prec1
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
if 'cuda' in args.device and torch.cuda.is_available():
if args.seed is not None:
torch.cuda.manual_seed_all(args.seed)
torch.cuda.set_device(args.device_ids[0])
cudnn.benchmark = True
else:
args.device_ids = None
# create model
print("=> using pre-trained model '{}'".format(args.arch))
model = models.__dict__[args.arch](pretrained=True)
model.to(args.device)
if args.device_ids and len(args.device_ids) > 1 and args.arch != 'shufflenet':
if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
model.features = torch.nn.DataParallel(model.features, args.device_ids)
else:
model = torch.nn.DataParallel(model, args.device_ids)
# BatchNorm folding
if 'resnet' in args.arch or args.arch == 'vgg16_bn' or args.arch == 'inception_v3':
print("Perform BN folding")
search_absorbe_bn(model)
QM().bn_folding = True
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss()
criterion.to(args.device)
cudnn.benchmark = True
# Data loading code
valdir = os.path.join(args.data, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
resize = 256 if args.arch != 'inception_v3' else 299
crop_size = 224 if args.arch != 'inception_v3' else 299
val_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(valdir, transforms.Compose([
transforms.Resize(resize),
transforms.CenterCrop(crop_size),
transforms.ToTensor(),
normalize,
])),
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
if args.eval_precision:
elog = EvalLog(['dtype', 'val_prec1', 'val_prec5'])
print("\nFloat32 no quantization")
QM().disable()
val_loss, val_prec1, val_prec5 = validate(val_loader, model, criterion)
elog.log('fp32', val_prec1, val_prec5)
logging.info('\nValidation Loss {val_loss:.4f} \t'
'Validation Prec@1 {val_prec1:.3f} \t'
'Validation Prec@5 {val_prec5:.3f} \n'
.format(val_loss=val_loss, val_prec1=val_prec1, val_prec5=val_prec5))
print("--------------------------------------------------------------------------")
for q in [8, 7, 6, 5, 4]:
args.qtype = 'int{}'.format(q)
print("\nQuantize to %s" % args.qtype)
QM().quantize = True
QM().reload(args, qparams)
val_loss, val_prec1, val_prec5 = validate(val_loader, model, criterion)
elog.log(args.qtype, val_prec1, val_prec5)
logging.info('\nValidation Loss {val_loss:.4f} \t'
'Validation Prec@1 {val_prec1:.3f} \t'
'Validation Prec@5 {val_prec5:.3f} \n'
.format(val_loss=val_loss, val_prec1=val_prec1, val_prec5=val_prec5))
print("--------------------------------------------------------------------------")
print(elog)
elog.save('results/precision/%s_%s_clipping.csv' % (args.arch, args.threshold))
elif args.custom_test:
log_name = 'results/custom_test/%s_max_mse_%s_cliping_layer_selection.csv' % (args.arch, args.threshold)
elog = EvalLog(['num_8bit_layers', 'indexes', 'val_prec1', 'val_prec5'], log_name, auto_save=True)
for i in range(len(max_mse_order_id)+1):
_8bit_layers = ['conv0_activation'] + max_mse_order_id[0:i]
print("it: %d, 8 bit layers: %d" % (i, len(_8bit_layers)))
QM().set_8bit_list(_8bit_layers)
val_loss, val_prec1, val_prec5 = validate(val_loader, model, criterion)
elog.log(i+1, str(_8bit_layers), val_prec1, val_prec5)
print(elog)
else:
val_loss, val_prec1, val_prec5 = validate(val_loader, model, criterion)
def validate(val_loader, model, criterion):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
if args.dump_dir is not None:
QM().disable()
DM(args.dump_dir)
with torch.no_grad():
end = time.time()
for i, (input, target) in enumerate(val_loader):
input = input.to(args.device)
target = target.to(args.device)
if args.dump_dir is not None and i == 5:
with DM(args.dump_dir):
DM().set_tag('batch%d'%i)
# compute output
output = model(input)
break
else:
output = model(input)
loss = criterion(output, target)
# measure accuracy and record loss
prec1, prec5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(float(prec1), input.size(0))
top5.update(float(prec5), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
top1=top1, top5=top5))
print(' * Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
return losses.avg, top1.avg, top5.avg
qparams = {'int': {
'threshold': args.threshold,
'true_zero': args.preserve_zero
}} # TODO: add params for bfloat
if __name__ == '__main__':
with QM(args, qparams):
main()