-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathprometeo_cfl.cu
152 lines (135 loc) · 7.62 KB
/
prometeo_cfl.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
// Copyright (c) "2019, by Stanford University
// Developer: Mario Di Renzo
// Affiliation: Center for Turbulence Research, Stanford University
// URL: https://ctr.stanford.edu
// Citation: Di Renzo, M., Lin, F., and Urzay, J. (2020).
// HTR solver: An open-source exascale-oriented task-based
// multi-GPU high-order code for hypersonic aerothermodynamics.
// Computer Physics Communications 255, 107262"
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY
// DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "prometeo_cfl.hpp"
#include "cuda_utils.hpp"
// Declare a constant memory that will hold the Mixture struct (initialized in prometeo_mixture.cu)
extern __device__ __constant__ Mix mix;
//-----------------------------------------------------------------------------
// KERNEL FOR CalculateMaxSpectralRadiusTask
//-----------------------------------------------------------------------------
__global__
void CalculateMaxSpectralRadius_kernel(const DeferredBuffer<double, 1> buffer,
const AccessorRO<double, 3> dcsi,
const AccessorRO<double, 3> deta,
const AccessorRO<double, 3> dzet,
const AccessorRO<double, 3> temperature,
const AccessorRO<VecNSp, 3> MassFracs,
const AccessorRO< Vec3, 3> velocity,
const AccessorRO<double, 3> rho,
const AccessorRO<double, 3> mu,
const AccessorRO<double, 3> lam,
const AccessorRO<VecNSp, 3> Di,
const AccessorRO<double, 3> SoS,
#if (defined(ELECTRIC_FIELD) && (nIons > 0))
const AccessorRO<VecNIo, 3> Ki,
const AccessorRO< Vec3, 3> eField,
#endif
const Rect<3> my_bounds,
const coord_t size_x,
const coord_t size_y,
const coord_t size_z)
{
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
int z = blockIdx.z * blockDim.z + threadIdx.z;
double my_r = 0.0; // Spectral radius cannot be lower than 0
if ((x < size_x) && (y < size_y) && (z < size_z)) {
const Point<3> p = Point<3>(x + my_bounds.lo.x,
y + my_bounds.lo.y,
z + my_bounds.lo.z);
my_r = CalculateMaxSpectralRadiusTask::CalculateMaxSpectralRadius(
dcsi, deta, dzet,
temperature, MassFracs, velocity,
rho, mu, lam, Di, SoS,
#if (defined(ELECTRIC_FIELD) && (nIons > 0))
Ki, eField,
#endif
p, mix);
}
reduceMax(my_r, buffer);
}
__host__
DeferredValue<double> CalculateMaxSpectralRadiusTask::gpu_base_impl(
const Args &args,
const std::vector<PhysicalRegion> ®ions,
const std::vector<Future> &futures,
Context ctx, Runtime *runtime)
{
assert(regions.size() == 1);
assert(futures.size() == 0);
// Accessor for metrics
const AccessorRO<double, 3> acc_dcsi_d (regions[0], FID_dcsi_d);
const AccessorRO<double, 3> acc_deta_d (regions[0], FID_deta_d);
const AccessorRO<double, 3> acc_dzet_d (regions[0], FID_dzet_d);
// Accessors for primitive variables
const AccessorRO<VecNSp, 3> acc_MassFracs (regions[0], FID_MassFracs);
const AccessorRO<double, 3> acc_temperature (regions[0], FID_temperature);
const AccessorRO< Vec3, 3> acc_velocity (regions[0], FID_velocity);
// Accessors for properties
const AccessorRO<double, 3> acc_rho (regions[0], FID_rho);
const AccessorRO<double, 3> acc_mu (regions[0], FID_mu);
const AccessorRO<double, 3> acc_lam (regions[0], FID_lam);
const AccessorRO<VecNSp, 3> acc_Di (regions[0], FID_Di);
const AccessorRO<double, 3> acc_SoS (regions[0], FID_SoS);
#if (defined(ELECTRIC_FIELD) && (nIons > 0))
const AccessorRO<VecNIo, 3> acc_Ki (regions[0], FID_Ki);
// Accessors for primitive variables
const AccessorRO< Vec3, 3> acc_eField (regions[0], FID_electricField);
#endif
// Extract execution domains
Rect<3> r_MyFluid = runtime->get_index_space_domain(ctx, regions[0].get_logical_region().get_index_space());
// Define thread grid
const int threads_per_block = 256;
dim3 TPB_3d = splitThreadsPerBlock<Xdir>(threads_per_block, r_MyFluid);
while (TPB_3d.x*TPB_3d.y*TPB_3d.z < 32) TPB_3d.x++;
const dim3 num_blocks_3d = dim3((getSize<Xdir>(r_MyFluid) + (TPB_3d.x - 1)) / TPB_3d.x,
(getSize<Ydir>(r_MyFluid) + (TPB_3d.y - 1)) / TPB_3d.y,
(getSize<Zdir>(r_MyFluid) + (TPB_3d.z - 1)) / TPB_3d.z);
// Store the maximum value per block in a deferred buffer
const size_t total_blocks = num_blocks_3d.x*num_blocks_3d.y*num_blocks_3d.z;
const Rect<1> bounds(Point<1>(0), Point<1>(total_blocks - 1));
DeferredBuffer<double, 1> buffer(bounds, Memory::GPU_FB_MEM);
CalculateMaxSpectralRadius_kernel<<<num_blocks_3d, TPB_3d>>>(buffer,
acc_dcsi_d, acc_deta_d, acc_dzet_d,
acc_temperature, acc_MassFracs, acc_velocity,
acc_rho, acc_mu, acc_lam, acc_Di, acc_SoS,
#if (defined(ELECTRIC_FIELD) && (nIons > 0))
acc_Ki, acc_eField,
#endif
r_MyFluid, getSize<Xdir>(r_MyFluid), getSize<Ydir>(r_MyFluid), getSize<Zdir>(r_MyFluid));
// Reduce spectral radii into r
DeferredValue<double> r(0.0);
// We use at most 1024 blocks
dim3 TPB((total_blocks > 1024) ? 1024 : total_blocks, 1, 1);
// Round up to the nearest multiple of warps
while ((TPB.x % 32) != 0) TPB.x++;
const dim3 num_blocks(1, 1, 1);
ReduceBufferMax_kernel<<<num_blocks, TPB>>>(buffer, r, total_blocks);
return r;
}