-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining_utils.py
67 lines (62 loc) · 1.81 KB
/
training_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
from utils import check_valid_loop
def train(
model, data_loader,
criterion, optimizer,
epoch, total_epochs,
device='cuda'
):
print('TRAINING')
model.train()
total_loss = 0.
for i, (images, target) in enumerate(data_loader):
images, target = images.to(device), target.to(device)
pred = model(images)
loss = criterion(pred, target)
total_loss += loss.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
average_loss = total_loss / (i+1)
if (i+1) % 50 == 0:
print(
f"Epoch: {epoch+1}/{total_epochs}, ",
f"Iteration: {i+1}/{len(data_loader)},",
f"Loss: {loss.item():.4f}, Average Loss: {average_loss:.4f}"
)
return total_loss/len(data_loader)
def validate(
model,
data_loader,
criterion,
device='cuda',
epoch=None,
out_dir=None,
class_names=None,
colors=None
):
print('VALIDATING')
validation_loss = 0.0
model.eval()
for i,(images, target) in enumerate(data_loader):
images, target = images.to(device), target.to(device)
pred = model(images)
# Save one validation result from the first batch each epoch.
if i == 0:
check_valid_loop(
pred,
images,
epoch,
i,
out_dir,
class_names,
colors
)
loss = criterion(pred,target)
validation_loss += loss.item()
if (i+1) % 50 == 0:
print(
f"Iteration: {i+1}/{len(data_loader)}",
f"Loss: {loss.item():.4f}"
)
final_valid_loss = validation_loss / len(data_loader)
return final_valid_loss