-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlicense_plate_model.py
150 lines (116 loc) · 6.58 KB
/
license_plate_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from mobilenetv3 import MobileNetV3_Small
# 定义2D位置编码类
class PositionalEncoding2D(nn.Module):
def __init__(self, d_model, height, width):
super(PositionalEncoding2D, self).__init__()
self.d_model = d_model
pe = torch.zeros(d_model, height, width)
y_position = torch.arange(0, height, dtype=torch.float).unsqueeze(1).unsqueeze(2)
x_position = torch.arange(0, width, dtype=torch.float).unsqueeze(0).unsqueeze(2)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-torch.log(torch.tensor(10000.0)) / d_model))
pe[0::2, :, :] = torch.sin(y_position * div_term).permute(2, 0, 1)
pe[1::2, :, :] = torch.cos(y_position * div_term).permute(2, 0, 1)
pe[0::2, :, :] += torch.sin(x_position * div_term).permute(2, 0, 1)
pe[1::2, :, :] += torch.cos(x_position * div_term).permute(2, 0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
return x + self.pe[:, :x.size(2), :x.size(3)]
class PositionalEncoding1D(nn.Module):
def __init__(self, d_model, max_length):
super(PositionalEncoding1D, self).__init__()
self.d_model = d_model
pe = torch.zeros(max_length, d_model)
position = torch.arange(0, max_length, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-torch.log(torch.tensor(10000.0)) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x):
return x + self.pe[:, :x.size(1), :]
class ImageEncoder(nn.Module):
def __init__(self, d_model=128, nhead=8, num_layers=6, dim_feedforward=2048, dropout=0.1):
super(ImageEncoder, self).__init__()
self.backbone = MobileNetV3_Small()
self.backbone = nn.Sequential(*list(self.backbone.children())[:-6]) # 去掉池化前的最后6层
self.conv1 = nn.Conv2d(576, d_model, kernel_size=1, stride=1, padding=0, bias=False)
self.positional_2d_encoding = PositionalEncoding2D(d_model, height=7, width=7)
self.transformer_encoder = nn.TransformerEncoder(
nn.TransformerEncoderLayer(
d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward, dropout=dropout, batch_first=True
),
num_layers=num_layers)
def forward(self, x):
x = self.backbone(x)
x = self.conv1(x)
x = self.positional_2d_encoding(x)
x = x.flatten(2).permute(0, 2, 1)
memory = self.transformer_encoder(x)
return memory
class TextDecoder(nn.Module):
def __init__(self, pad_idx, vocab_size, d_model=128, nhead=8, num_layers=6, dim_feedforward=2048, dropout=0.1, max_length=16):
super(TextDecoder, self).__init__()
self.pad_idx = pad_idx
self.positional_1d_encoding = PositionalEncoding1D(d_model, max_length)
self.embedding = nn.Embedding(vocab_size, d_model, padding_idx=pad_idx)
self.transformer_decoder = nn.TransformerDecoder(
nn.TransformerDecoderLayer(
d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward, dropout=dropout, batch_first=True
),
num_layers=num_layers)
self.fc = nn.Linear(d_model, vocab_size)
def forward(self, memory, tgt):
seq_length_tgt = tgt.size(1)
tgt_emb = self.positional_1d_encoding(self.embedding(tgt))
tgt_mask = self.generate_square_subsequent_mask(seq_length_tgt).to(tgt.device)
tgt_padding_mask = (tgt == self.pad_idx).to(tgt.device)
output = self.transformer_decoder(tgt_emb, memory, tgt_mask=tgt_mask, tgt_key_padding_mask=tgt_padding_mask)
output = self.fc(output)
return output
def generate_square_subsequent_mask(self, sz):
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
return mask
class LicensePlateModel(nn.Module):
def __init__(self, pad_idx, vocab_size, d_model=128, nhead_encoder=8, nhead_decoder=8, num_encoder_layers=6, num_decoder_layers=6, dim_feedforward=2048, dropout=0.1, max_length=16):
super(LicensePlateModel, self).__init__()
self.image_encoder = ImageEncoder(d_model=d_model, nhead=nhead_encoder, num_layers=num_encoder_layers, dim_feedforward=dim_feedforward, dropout=dropout)
self.text_decoder = TextDecoder(pad_idx=pad_idx, vocab_size=vocab_size, d_model=d_model, nhead=nhead_decoder, num_layers=num_decoder_layers, dim_feedforward=dim_feedforward, dropout=dropout, max_length=max_length)
def forward(self, x, tgt):
memory = self.image_encoder(x)
output = self.text_decoder(memory, tgt)
return output
def encode_image(self, x):
memory = self.image_encoder(x)
return memory
def decode_text(self, memory, tgt):
output = self.text_decoder(memory, tgt)
return output
if __name__ == '__main__':
from license_plate_dataset import LicensePlateDataset, LicensePlateVocab
from torch.utils.data import DataLoader
img_height = 224
img_width = 224
# 设置数据变换
transform = transforms.Compose([
transforms.Resize((img_height, img_width)),
transforms.ToTensor()
])
# 词汇表
vocab_list = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', '云', '京', '冀', '吉', '学', '宁', '川', '挂', '新', '晋', '桂', '沪', '津', '浙', '渝', '湘', '琼', '甘', '皖', '粤', '苏', '蒙', '藏', '警', '豫', '贵', '赣', '辽', '鄂', '闽', '陕', '青', '鲁', '黑']
vocab = LicensePlateVocab(vocab_list)
# 最大序列长度
max_length = 16 # 适当增加以包含EOS和可能的PAD
# 创建数据集和数据加载器
train_folder = r'D:\code\transformer_plate\datasets\train'
val_folder = r'D:\code\transformer_plate\datasets\val'
train_dataset = LicensePlateDataset(train_folder, vocab, max_length, transform)
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
data_iter = iter(train_loader)
images, labels = next(data_iter)
model = LicensePlateModel(pad_idx=vocab.pad_idx, vocab_size=vocab.vocab_size, max_length=max_length)
output = model(images, labels)
print(output.shape) # [4, 10, 10]