-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvpg.py
435 lines (373 loc) · 17 KB
/
vpg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
"""
Original code from John Schulman for CS294 Deep Reinforcement Learning Spring 2017
Adapted for CS294-112 Fall 2017 by Abhishek Gupta and Joshua Achiam
Adapted for CS294-112 Fall 2018 by Michael Chang and Soroush Nasiriany
"""
import numpy as np
import tensorflow as tf
import gym
import logz
import os
import time
import inspect
def build_mlp(input_placeholder, output_size, scope, n_layers, size, activation=tf.tanh, output_activation=None):
"""
Building a feedforward neural network. We use neural network to represent our policy and value function(if nn_baseline is present).
"""
with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
x = input_placeholder
for i in range(n_layers):
x = tf.layers.dense(x, size, activation=activation)
output_placeholder = tf.layers.dense(x, output_size, activation=output_activation)
return output_placeholder
def pathlength(path):
return len(path["reward"])
def setup_logger(logdir, locals_):
# Configure output directory for logging
logz.configure_output_dir(logdir)
# Log experimental parameters
args = inspect.getargspec(train_PG)[0]
# print(args)
params = {k: locals_[k] if k in locals_ else None for k in args}
logz.save_params(params)
class Agent(object):
def __init__(self, env_name, computation_graph_args, sample_trajectory_args, estimate_return_args=None, model_save_args=None):
super(Agent, self).__init__()
self.env_name = env_name
self.ob_dim = computation_graph_args['ob_dim']
self.ac_dim = computation_graph_args['ac_dim']
self.discrete = computation_graph_args['discrete']
self.size = computation_graph_args['size']
self.n_layers = computation_graph_args['n_layers']
self.learning_rate = computation_graph_args['learning_rate']
self.animate = sample_trajectory_args['animate']
self.max_path_length = sample_trajectory_args['max_path_length']
self.min_timesteps_per_batch = sample_trajectory_args['min_timesteps_per_batch']
if estimate_return_args:
self.gamma = estimate_return_args['gamma']
self.reward_to_go = estimate_return_args['reward_to_go']
self.nn_baseline = estimate_return_args['nn_baseline']
self.normalize_advantages = estimate_return_args['normalize_advantages']
self.eps = 1e-8
if model_save_args:
self.model_dir = model_save_args['model_dir']
# print("Model dir: ", self.model_dir)
if not os.path.exists(self.model_dir):
os.makedirs(self.model_dir)
def init_tf_sess(self, savr=True):
tf_config = tf.ConfigProto(inter_op_parallelism_threads=1, intra_op_parallelism_threads=1)
self.sess = tf.Session(config=tf_config)
self.sess.__enter__() # equivalent to `with self.sess:`
tf.global_variables_initializer().run() # pylint: disable=E1101
self.sess.run(tf.variables_initializer([v for v in tf.global_variables() if v.name.startswith("local")]))
if savr:
self.saver = tf.train.Saver()
def define_placeholders(self):
"""
Defining the placeholders for (batch) observations, actions and advantage values.
"""
sy_ob_no = tf.placeholder(shape=[None, self.ob_dim], name="ob", dtype=tf.float32)
if self.discrete:
sy_ac_na = tf.placeholder(shape=[None], name="ac", dtype=tf.int32)
else:
sy_ac_na = tf.placeholder(shape=[None, self.ac_dim], name="ac", dtype=tf.float32)
sy_adv_n = tf.placeholder(shape=[None], name="adv", dtype=tf.float32)
return sy_ob_no, sy_ac_na, sy_adv_n
def policy_forward_pass(self, sy_ob_no):
"""
Feedforwarding observations throughout our neural network. For discrete action space, we return logits(raw output of neural network), for continuous action space, we return mean and log_std.
"""
if self.discrete:
sy_logits_na = build_mlp(sy_ob_no, self.ac_dim, "discrete_policy",
self.n_layers, self.size, activation=tf.nn.relu)
return sy_logits_na
else:
sy_mean = build_mlp(sy_ob_no, self.ac_dim, "continuous_policy_mean",
self.n_layers, self.size, activation=tf.nn.relu)
sy_logstd = tf.get_variable("continuous_policy_std", shape=[self.ac_dim])
return (sy_mean, sy_logstd)
def sample_action(self, policy_parameters):
"""
Sampling an action from policy distribution. For discrete action space, we sample from the categorical distribution. For continuous action space, we sample from a normal distribution and construct the action with mean and log_std(taking an exp) parameters.
"""
if self.discrete:
sy_logits_na = policy_parameters
sy_sampled_ac = tf.squeeze(tf.multinomial(sy_logits_na, num_samples=1), axis=1)
else:
sy_mean, sy_logstd = policy_parameters
z = tf.random_normal(shape=tf.shape(sy_mean))
sy_sampled_ac = sy_mean + tf.exp(sy_logstd) * z
return sy_sampled_ac
def get_log_prob(self, policy_parameters, sy_ac_na):
"""
Computing the log probability of chosen actions by the policy.
"""
if self.discrete:
sy_logits_na = policy_parameters
sy_ac_na = tf.one_hot(sy_ac_na, self.ac_dim)
sy_logprob_n = tf.nn.softmax_cross_entropy_with_logits_v2(labels=sy_ac_na, logits=sy_logits_na)
else:
sy_mean, sy_logstd = policy_parameters
sy_z = (sy_mean - sy_ac_na) / tf.exp(sy_logstd)
sy_logprob_n = 0.5 * tf.reduce_mean(sy_z ** 2, axis=1)
return sy_logprob_n
def build_computation_graph(self):
"""
Building computation graph for policy gradient algorithm.
"""
# Defining placeholders for obs/states, actions and advantage values.
self.sy_ob_no, self.sy_ac_na, self.sy_adv_n = self.define_placeholders()
# Computing the logits.
self.policy_parameters = self.policy_forward_pass(self.sy_ob_no)
# Sampling an action according to our policy.
self.sy_sampled_ac = self.sample_action(self.policy_parameters)
# Computing log_probs of chosen actions.
self.sy_logprob_n = self.get_log_prob(self.policy_parameters, self.sy_ac_na)
# Defining the loss function.
# http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-5.pdf
loss = tf.reduce_mean(self.sy_logprob_n * self.sy_adv_n)
self.update_op = tf.train.AdamOptimizer(self.learning_rate).minimize(loss)
if self.nn_baseline:
# Create the value network.
self.baseline_prediction = tf.squeeze(build_mlp(
self.sy_ob_no,
1,
"nn_baseline",
n_layers=self.n_layers,
size=self.size))
# Placeholder for target values which will be used in the loss function for value network.
self.sy_target_n = tf.placeholder(dtype=tf.float32,
shape=[None],
name='sy_target_n')
# Define the loss function for value network. Basically MSE loss.
baseline_loss = tf.reduce_mean((self.baseline_prediction - self.sy_target_n) ** 2)
self.baseline_update_op = tf.train.AdamOptimizer(self.learning_rate).minimize(baseline_loss)
def sample_trajectories(self, itr, env):
"""
Collect paths until we have enough timesteps.
"""
timesteps_this_batch = 0
paths = []
while True:
animate_this_episode = (len(paths) == 0 and (itr % 10 == 0) and self.animate)
path = self.sample_trajectory(env, animate_this_episode)
paths.append(path)
timesteps_this_batch += pathlength(path)
if timesteps_this_batch > self.min_timesteps_per_batch:
break
return paths, timesteps_this_batch
def sample_trajectory(self, env, animate_this_episode):
ob = env.reset()
obs, acs, rewards = [], [], []
steps = 0
while True:
if animate_this_episode:
env.render()
time.sleep(0.1)
obs.append(ob)
ac = self.sess.run(self.sy_sampled_ac, feed_dict={self.sy_ob_no: ob[None]})
# print("Action: ", ac)
ac = ac[0]
acs.append(ac)
ob, rew, done, _ = env.step(ac)
rewards.append(rew)
steps += 1
if done or steps > self.max_path_length:
break
path = {"observation": np.array(obs, dtype=np.float32),
"reward": np.array(rewards, dtype=np.float32),
"action": np.array(acs, dtype=np.float32)}
return path
def sum_of_rewards(self, re_n):
"""
Monte Carlo estimation of Q values.
"""
rewards = []
if self.reward_to_go:
for re_path in re_n:
# Per path calculate the estimated rewards for the trajectory
path_est = []
# Per time step in the path calculate the reward to go
for i, re in enumerate(re_path):
# Find the len of rtg.
reward_to_go_len = len(re_path) - i
# Calculate the discount rates.
g = np.power(self.gamma, np.arange(reward_to_go_len))
# Multiply discount rates with actual rewards and sum.
re_to_go = np.sum(g * re_path[i:])
path_est.append(re_to_go)
# Append the path's array of estimated returns
rewards.append(np.array(path_est))
else:
for reward_path in re_n:
t_prev = np.arange(len(reward_path))
# Calculate the discount rates.
gamma = np.power(self.gamma, t_prev)
# Calculate the discounted total reward.
discounted_total_reward = np.sum(reward_path * gamma)
path_r = discounted_total_reward * np.ones_like(reward_path)
rewards.append(path_r)
q_val = np.concatenate(rewards)
return q_val
def compute_advantage(self, ob_no, q_n):
"""
Computes advantages by (possibly) subtracting a baseline from the estimated Q values. If not nn_baseline, we just return q_n.
"""
if self.nn_baseline:
b_n = self.sess.run(self.baseline_prediction, feed_dict={self.sy_ob_no: ob_no})
# Match the statistics.
b_n = np.mean(q_n) + np.std(q_n) * b_n
adv_n = q_n - b_n
else:
adv_n = q_n.copy()
return adv_n
def estimate_return(self, ob_no, re_n):
"""
Estimating the returns over a set of trajectories.
"""
q_n = self.sum_of_rewards(re_n)
adv_n = self.compute_advantage(ob_no, q_n)
if self.normalize_advantages:
adv_n = (adv_n - np.mean(adv_n)) / (np.std(adv_n) + self.eps)
return q_n, adv_n
def update_parameters(self, ob_no, ac_na, q_n, adv_n, epoch):
"""
Updating parameters of policy and value function(if nn_baseline).
"""
if self.nn_baseline:
# Computing targets for value function.
target_n = (q_n - np.mean(q_n)) / (np.std(q_n) + self.eps)
# Updating the value function.
self.sess.run(self.baseline_update_op, feed_dict={self.sy_ob_no: ob_no,
self.sy_target_n: target_n})
# Updating the policy function.
self.sess.run([self.update_op], feed_dict={self.sy_ob_no: ob_no,
self.sy_ac_na: ac_na,
self.sy_adv_n: adv_n})
# Save the model after updating. No check for the improvement :)
self.saver.save(self.sess, os.path.join(self.model_dir, "model"), global_step=epoch)
def train_PG(
exp_name,
env_name,
n_iter,
gamma,
min_timesteps_per_batch,
max_path_length,
learning_rate,
reward_to_go,
animate,
logdir,
model_dir,
normalize_advantages,
nn_baseline,
n_layers,
size):
start = time.time()
setup_logger(logdir, locals())
env = gym.make(env_name)
# Maximum length for episodes
max_path_length = max_path_length or env.spec.max_episode_steps
# Is this env continuous, or self.discrete?
discrete = isinstance(env.action_space, gym.spaces.Discrete)
# Observation and action sizes
ob_dim = env.observation_space.shape[0]
ac_dim = env.action_space.n if discrete else env.action_space.shape[0]
computation_graph_args = {
'n_layers': n_layers,
'ob_dim': ob_dim,
'ac_dim': ac_dim,
'discrete': discrete,
'size': size,
'learning_rate': learning_rate,
}
sample_trajectory_args = {
'animate': animate,
'max_path_length': max_path_length,
'min_timesteps_per_batch': min_timesteps_per_batch
}
estimate_return_args = {
'gamma': gamma,
'reward_to_go': reward_to_go,
'nn_baseline': nn_baseline,
'normalize_advantages': normalize_advantages,
}
model_save_args = {
'model_dir': model_dir
}
agent = Agent(env_name, computation_graph_args, sample_trajectory_args, estimate_return_args, model_save_args=model_save_args)
# build computation graph
agent.build_computation_graph()
# tensorflow: config, session, variable initialization
agent.init_tf_sess()
total_timesteps = 0
for itr in range(n_iter):
print("********** Iteration %i ************" % itr)
paths, timesteps_this_batch = agent.sample_trajectories(itr, env)
total_timesteps += timesteps_this_batch
# Build arrays for observation, action for the policy gradient update by concatenating
# across paths
ob_no = np.concatenate([path["observation"] for path in paths])
ac_na = np.concatenate([path["action"] for path in paths])
re_n = [path["reward"] for path in paths]
q_n, adv_n = agent.estimate_return(ob_no, re_n)
agent.update_parameters(ob_no, ac_na, q_n, adv_n, itr)
# Log diagnostics
returns = [path["reward"].sum() for path in paths]
ep_lengths = [pathlength(path) for path in paths]
logz.log_tabular("Time", time.time() - start)
logz.log_tabular("Iteration", itr)
logz.log_tabular("AverageReturn", np.mean(returns))
logz.log_tabular("StdReturn", np.std(returns))
logz.log_tabular("MaxReturn", np.max(returns))
logz.log_tabular("MinReturn", np.min(returns))
logz.log_tabular("EpLenMean", np.mean(ep_lengths))
logz.log_tabular("EpLenStd", np.std(ep_lengths))
logz.log_tabular("TimestepsThisBatch", timesteps_this_batch)
logz.log_tabular("TimestepsSoFar", total_timesteps)
logz.dump_tabular()
logz.pickle_tf_vars()
def main():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('env_name', type=str)
parser.add_argument('--exp_name', type=str, default='vpg')
parser.add_argument('--render', action='store_true')
parser.add_argument('--discount', type=float, default=1.0)
parser.add_argument('--n_iter', '-n', type=int, default=100)
parser.add_argument('--batch_size', '-b', type=int, default=1000)
parser.add_argument('--ep_len', '-ep', type=float, default=-1.)
parser.add_argument('--learning_rate', '-lr', type=float, default=5e-3)
parser.add_argument('--reward_to_go', '-rtg', action='store_true')
parser.add_argument('--dont_normalize_advantages', '-dna', action='store_true')
parser.add_argument('--nn_baseline', '-bl', action='store_true')
parser.add_argument('--n_experiments', '-e', type=int, default=1)
parser.add_argument('--n_layers', '-l', type=int, default=2)
parser.add_argument('--size', '-s', type=int, default=64)
args = parser.parse_args()
if not(os.path.exists('data')):
os.makedirs('data')
logdir = args.exp_name + '_' + time.strftime("%d-%m-%Y_%H-%M-%S")
model_dir = os.path.join('models', logdir)
logdir = os.path.join('data', logdir)
if not (os.path.exists(model_dir)):
os.makedirs(model_dir)
max_path_length = args.ep_len if args.ep_len > 0 else None
train_PG(
exp_name=args.exp_name,
env_name=args.env_name,
n_iter=args.n_iter,
gamma=args.discount,
min_timesteps_per_batch=args.batch_size,
max_path_length=max_path_length,
learning_rate=args.learning_rate,
reward_to_go=args.reward_to_go,
animate=args.render,
logdir=os.path.join(logdir),
model_dir=model_dir,
normalize_advantages=not(args.dont_normalize_advantages),
nn_baseline=args.nn_baseline,
n_layers=args.n_layers,
size=args.size
)
if __name__ == "__main__":
main()