Unitxt is a library for customizable textual data preparation and evaluation tailored to generative language models. Unitxt natively integrates with common libraries like HuggingFace and LM-eval-harness and deconstructs processing flows into modular components, enabling easy customization and sharing between practitioners. These components encompass model-specific formats, task prompts, and many other comprehensive dataset processing definitions. These components are centralized in the Unitxt-Catalog, thus fostering collaboration and exploration in modern textual data workflows.
The full Unitxt catalog can be viewed in an online explorer.
Read more about Unitxt at www.unitxt.ai.
Title: Unitxt: Flexible, Shareable and Reusable Data Preparation and Evaluation for Generative AI
Abstract: link
@misc{unitxt,
title={Unitxt: Flexible, Shareable and Reusable Data Preparation and Evaluation for Generative AI},
author={Elron Bandel and Yotam Perlitz and Elad Venezian and Roni Friedman-Melamed and Ofir Arviv and Matan Orbach and Shachar Don-Yehyia and Dafna Sheinwald and Ariel Gera and Leshem Choshen and Michal Shmueli-Scheuer and Yoav Katz},
year={2024},
eprint={2401.14019},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
unitxt
: Subset of Unitxt tasks that were not in LM-Eval Harness task catalog, including new types of tasks like multi-label classification, grammatical error correction, named entity extraction.
The full list of Unitxt tasks currently supported can be seen under tasks/unitxt
directory.
See the adding tasks guide.