- ml_models : Running model training
- ml_optim : Hyper-parameter search
- ml_benchmark : Benchmark
- ml_test : Testing for developpers.
path are relative the the install folder of mlmodels:
dataset/timeseries/myfile.csv mean <Install Folder mlmodels>/dataset/timeseries/myfile.csv
setup, fit, predict, save, load a model
ml_models --do
init : copy to path --path "myPath"
generate_config : generate config file from code source
model_list : list all models in the repo
fit : wrap fit generic method
predict : predict using a pre-trained model and some data
test : Test a model
#### Examples
### Copy Notebooks to path
ml_models --do init --path ztest/
### list all models available in the repo
ml_models --do model_list
#### generate JSON config file for one model
ml_models --do generate_config --model_uri model_tf.1_lstm --save_folder "ztest/"
#### Fit model and Save
ml_models --do fit --config_file model_tf/1_lstm.json --config_mode "test"
#### Load model and Save results
ml_models --do predict --config_file model_tf/1_lstm.json --config_mode "test"
#### Internal model
ml_models --do test --model_uri model_tf.1_lstm
#### Other examples
ml_models --do fit --config_file dataset/json/benchmark_timeseries/gluonts_m4.json --config_mode "deepar"
ml_models --do fit --config_file dataset/json/benchmark_timeseries/gluonts_m5.json --config_mode "deepar"
#### External Models by Absolute path URI
ml_models --do test --model_uri "example/custom_model/1_lstm.py"
Hyper-parameter search
ml_optim --do
test : Test the hyperparameter optimization for a specific model
test_all : TODO, Test all
search : search for the best hyperparameters of a specific model
#### For normal optimization search method
ml_optim --do search --config_file template/optim_config.json --config_mode "test"
###### for pruning method
ml_optim --do search --config_file template/optim_config_prune.json --config_mode "test"
###### Using Model default params
ml_optim --do test --model_uri model_tf.1_lstm --ntrials 2
## Benchmark model
#### One Single file for all models
ml_benchmark --do dataset/json/benchmark.json --path_json dataset/json/benchmark_timeseries/test02/model_list.json
#### Many json
ml_benchmark --do dataset/json/benchmark.json --path_json dataset/json/benchmark_timeseries/test01/
### Work in Progress
#### Distributed Pytorch on CPU (using Horovod and MPI on Linux, 4 processes) in model_tch/mlp.py
mlmodels/distri_torch_mpirun.sh 4 model_tch.mlp mymodel.json
ml_distributed --do fit --n_node 4 --model_uri model_tch.mlp --model_json mymodel.json
https://colab.research.google.com/drive/1u6ZUrBExDY9Jr6HA7kKutVKoP5RQfvRi#scrollTo=4qtLQiaCaDaU