Skip to content

Commit dcd81c8

Browse files
AlexanderDokuchaevshumaari
authored andcommitted
[PT2] Add port ids to reference graphs (openvinotoolkit#3267)
### Changes Add `in_port_id` and `out_port_id` fields for edge data in reference files. ### Reason for changes To check port_ids in for edge
1 parent e8f7138 commit dcd81c8

33 files changed

+14950
-14926
lines changed

tests/torch2/data/function_hook/nncf_graph/convert_to_nncf_graph.dot

+7-7
Original file line numberDiff line numberDiff line change
@@ -7,11 +7,11 @@ x [id=0, metatype=PTInputNoopMetatype, type=nncf_model_input];
77
"conv/post_hook__conv-conv2d-0__0[0]/add/0" [id=5, metatype=PTAddMetatype, type=add];
88
"/relu/0" [id=6, metatype=PTRELUMetatype, type=relu];
99
output [id=7, metatype=PTOutputNoopMetatype, type=nncf_model_output];
10-
x -> "conv/conv2d/0" [dtype=float, shape="(1, 1, 3, 3)"];
11-
"conv.weight" -> "conv/conv2d/0" [dtype=float, shape="(1, 1, 1, 1)"];
12-
"conv.bias" -> "conv/conv2d/0" [dtype=float, shape="(1,)"];
13-
"conv/conv2d/0" -> "conv/post_hook__conv-conv2d-0__0[0]/add/0" [dtype=float, shape="(1, 1, 3, 3)"];
14-
"__nncf_hooks.post_hooks.conv/conv2d/0__0.0.w" -> "conv/post_hook__conv-conv2d-0__0[0]/add/0" [dtype=float, shape="(1,)"];
15-
"conv/post_hook__conv-conv2d-0__0[0]/add/0" -> "/relu/0" [dtype=float, shape="(1, 1, 3, 3)"];
16-
"/relu/0" -> output [dtype=float, shape="(1, 1, 3, 3)"];
10+
x -> "conv/conv2d/0" [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 1, 3, 3)"];
11+
"conv.weight" -> "conv/conv2d/0" [dtype=float, in_port_id=1, out_port_id=0, shape="(1, 1, 1, 1)"];
12+
"conv.bias" -> "conv/conv2d/0" [dtype=float, in_port_id=2, out_port_id=0, shape="(1,)"];
13+
"conv/conv2d/0" -> "conv/post_hook__conv-conv2d-0__0[0]/add/0" [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 1, 3, 3)"];
14+
"__nncf_hooks.post_hooks.conv/conv2d/0__0.0.w" -> "conv/post_hook__conv-conv2d-0__0[0]/add/0" [dtype=float, in_port_id=1, out_port_id=0, shape="(1,)"];
15+
"conv/post_hook__conv-conv2d-0__0[0]/add/0" -> "/relu/0" [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 1, 3, 3)"];
16+
"/relu/0" -> output [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 1, 3, 3)"];
1717
}

tests/torch2/data/function_hook/nncf_graph/convert_to_nncf_graph_multi_edges.dot

+2-2
Original file line numberDiff line numberDiff line change
@@ -2,6 +2,6 @@ strict digraph {
22
x [id=0, metatype=PTInputNoopMetatype, type=nncf_model_input];
33
"/add/0" [id=1, metatype=PTAddMetatype, type=add];
44
output [id=2, metatype=PTOutputNoopMetatype, type=nncf_model_output];
5-
x -> "/add/0" [dtype=float, parallel_input_port_ids="[1]", shape="(1, 1)"];
6-
"/add/0" -> output [dtype=float, shape="(1, 1)"];
5+
x -> "/add/0" [dtype=float, in_port_id=0, out_port_id=0, parallel_input_port_ids="[1]", shape="(1, 1)"];
6+
"/add/0" -> output [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 1)"];
77
}

tests/torch2/data/function_hook/nncf_graph/model_graph_convnext_small.dot

+727-727
Large diffs are not rendered by default.

tests/torch2/data/function_hook/nncf_graph/model_graph_densenet121.dot

+1,573-1,573
Large diffs are not rendered by default.

tests/torch2/data/function_hook/nncf_graph/model_graph_efficientnet_b0.dot

+577-577
Large diffs are not rendered by default.

tests/torch2/data/function_hook/nncf_graph/model_graph_inception_v3.dot

+822-822
Large diffs are not rendered by default.

tests/torch2/data/function_hook/nncf_graph/model_graph_mobilenet_v2.dot

+426-426
Large diffs are not rendered by default.

tests/torch2/data/function_hook/nncf_graph/model_graph_mobilenet_v3_small.dot

+383-383
Large diffs are not rendered by default.

tests/torch2/data/function_hook/nncf_graph/model_graph_resnet18.dot

+180-180
Large diffs are not rendered by default.

tests/torch2/data/function_hook/nncf_graph/model_graph_resnext50_32x4d.dot

+459-459
Large diffs are not rendered by default.

tests/torch2/data/function_hook/nncf_graph/model_graph_shufflenet_v2_x0_5.dot

+544-544
Large diffs are not rendered by default.

tests/torch2/data/function_hook/nncf_graph/model_graph_squeezenet1_0.dot

+127-127
Large diffs are not rendered by default.

tests/torch2/data/function_hook/nncf_graph/model_graph_swin_v2_b.dot

+1,914-1,914
Large diffs are not rendered by default.

tests/torch2/data/function_hook/nncf_graph/model_graph_vgg16.dot

+73-73
Original file line numberDiff line numberDiff line change
@@ -73,77 +73,77 @@ x [id=0, metatype=PTInputNoopMetatype, type=nncf_model_input];
7373
"classifier.6.bias" [id=71, metatype=PTConstNoopMetatype, type=nncf_model_const];
7474
"classifier/6/linear/0" [id=72, metatype=PTLinearMetatype, type=linear];
7575
output [id=73, metatype=PTOutputNoopMetatype, type=nncf_model_output];
76-
x -> "features/0/conv2d/0" [dtype=float, shape="(1, 3, 32, 32)"];
77-
"features.0.weight" -> "features/0/conv2d/0" [dtype=float, shape="(64, 3, 3, 3)"];
78-
"features.0.bias" -> "features/0/conv2d/0" [dtype=float, shape="(64,)"];
79-
"features/0/conv2d/0" -> "features/1/relu_/0" [dtype=float, shape="(1, 64, 32, 32)"];
80-
"features/1/relu_/0" -> "features/2/conv2d/0" [dtype=float, shape="(1, 64, 32, 32)"];
81-
"features.2.weight" -> "features/2/conv2d/0" [dtype=float, shape="(64, 64, 3, 3)"];
82-
"features.2.bias" -> "features/2/conv2d/0" [dtype=float, shape="(64,)"];
83-
"features/2/conv2d/0" -> "features/3/relu_/0" [dtype=float, shape="(1, 64, 32, 32)"];
84-
"features/3/relu_/0" -> "features/4/max_pool2d/0" [dtype=float, shape="(1, 64, 32, 32)"];
85-
"features/4/max_pool2d/0" -> "features/5/conv2d/0" [dtype=float, shape="(1, 64, 16, 16)"];
86-
"features.5.weight" -> "features/5/conv2d/0" [dtype=float, shape="(128, 64, 3, 3)"];
87-
"features.5.bias" -> "features/5/conv2d/0" [dtype=float, shape="(128,)"];
88-
"features/5/conv2d/0" -> "features/6/relu_/0" [dtype=float, shape="(1, 128, 16, 16)"];
89-
"features/6/relu_/0" -> "features/7/conv2d/0" [dtype=float, shape="(1, 128, 16, 16)"];
90-
"features.7.weight" -> "features/7/conv2d/0" [dtype=float, shape="(128, 128, 3, 3)"];
91-
"features.7.bias" -> "features/7/conv2d/0" [dtype=float, shape="(128,)"];
92-
"features/7/conv2d/0" -> "features/8/relu_/0" [dtype=float, shape="(1, 128, 16, 16)"];
93-
"features/8/relu_/0" -> "features/9/max_pool2d/0" [dtype=float, shape="(1, 128, 16, 16)"];
94-
"features/9/max_pool2d/0" -> "features/10/conv2d/0" [dtype=float, shape="(1, 128, 8, 8)"];
95-
"features.10.weight" -> "features/10/conv2d/0" [dtype=float, shape="(256, 128, 3, 3)"];
96-
"features.10.bias" -> "features/10/conv2d/0" [dtype=float, shape="(256,)"];
97-
"features/10/conv2d/0" -> "features/11/relu_/0" [dtype=float, shape="(1, 256, 8, 8)"];
98-
"features/11/relu_/0" -> "features/12/conv2d/0" [dtype=float, shape="(1, 256, 8, 8)"];
99-
"features.12.weight" -> "features/12/conv2d/0" [dtype=float, shape="(256, 256, 3, 3)"];
100-
"features.12.bias" -> "features/12/conv2d/0" [dtype=float, shape="(256,)"];
101-
"features/12/conv2d/0" -> "features/13/relu_/0" [dtype=float, shape="(1, 256, 8, 8)"];
102-
"features/13/relu_/0" -> "features/14/conv2d/0" [dtype=float, shape="(1, 256, 8, 8)"];
103-
"features.14.weight" -> "features/14/conv2d/0" [dtype=float, shape="(256, 256, 3, 3)"];
104-
"features.14.bias" -> "features/14/conv2d/0" [dtype=float, shape="(256,)"];
105-
"features/14/conv2d/0" -> "features/15/relu_/0" [dtype=float, shape="(1, 256, 8, 8)"];
106-
"features/15/relu_/0" -> "features/16/max_pool2d/0" [dtype=float, shape="(1, 256, 8, 8)"];
107-
"features/16/max_pool2d/0" -> "features/17/conv2d/0" [dtype=float, shape="(1, 256, 4, 4)"];
108-
"features.17.weight" -> "features/17/conv2d/0" [dtype=float, shape="(512, 256, 3, 3)"];
109-
"features.17.bias" -> "features/17/conv2d/0" [dtype=float, shape="(512,)"];
110-
"features/17/conv2d/0" -> "features/18/relu_/0" [dtype=float, shape="(1, 512, 4, 4)"];
111-
"features/18/relu_/0" -> "features/19/conv2d/0" [dtype=float, shape="(1, 512, 4, 4)"];
112-
"features.19.weight" -> "features/19/conv2d/0" [dtype=float, shape="(512, 512, 3, 3)"];
113-
"features.19.bias" -> "features/19/conv2d/0" [dtype=float, shape="(512,)"];
114-
"features/19/conv2d/0" -> "features/20/relu_/0" [dtype=float, shape="(1, 512, 4, 4)"];
115-
"features/20/relu_/0" -> "features/21/conv2d/0" [dtype=float, shape="(1, 512, 4, 4)"];
116-
"features.21.weight" -> "features/21/conv2d/0" [dtype=float, shape="(512, 512, 3, 3)"];
117-
"features.21.bias" -> "features/21/conv2d/0" [dtype=float, shape="(512,)"];
118-
"features/21/conv2d/0" -> "features/22/relu_/0" [dtype=float, shape="(1, 512, 4, 4)"];
119-
"features/22/relu_/0" -> "features/23/max_pool2d/0" [dtype=float, shape="(1, 512, 4, 4)"];
120-
"features/23/max_pool2d/0" -> "features/24/conv2d/0" [dtype=float, shape="(1, 512, 2, 2)"];
121-
"features.24.weight" -> "features/24/conv2d/0" [dtype=float, shape="(512, 512, 3, 3)"];
122-
"features.24.bias" -> "features/24/conv2d/0" [dtype=float, shape="(512,)"];
123-
"features/24/conv2d/0" -> "features/25/relu_/0" [dtype=float, shape="(1, 512, 2, 2)"];
124-
"features/25/relu_/0" -> "features/26/conv2d/0" [dtype=float, shape="(1, 512, 2, 2)"];
125-
"features.26.weight" -> "features/26/conv2d/0" [dtype=float, shape="(512, 512, 3, 3)"];
126-
"features.26.bias" -> "features/26/conv2d/0" [dtype=float, shape="(512,)"];
127-
"features/26/conv2d/0" -> "features/27/relu_/0" [dtype=float, shape="(1, 512, 2, 2)"];
128-
"features/27/relu_/0" -> "features/28/conv2d/0" [dtype=float, shape="(1, 512, 2, 2)"];
129-
"features.28.weight" -> "features/28/conv2d/0" [dtype=float, shape="(512, 512, 3, 3)"];
130-
"features.28.bias" -> "features/28/conv2d/0" [dtype=float, shape="(512,)"];
131-
"features/28/conv2d/0" -> "features/29/relu_/0" [dtype=float, shape="(1, 512, 2, 2)"];
132-
"features/29/relu_/0" -> "features/30/max_pool2d/0" [dtype=float, shape="(1, 512, 2, 2)"];
133-
"features/30/max_pool2d/0" -> "avgpool/adaptive_avg_pool2d/0" [dtype=float, shape="(1, 512, 1, 1)"];
134-
"avgpool/adaptive_avg_pool2d/0" -> "/flatten/0" [dtype=float, shape="(1, 512, 7, 7)"];
135-
"/flatten/0" -> "classifier/0/linear/0" [dtype=float, shape="(1, 25088)"];
136-
"classifier.0.weight" -> "classifier/0/linear/0" [dtype=float, shape="(4096, 25088)"];
137-
"classifier.0.bias" -> "classifier/0/linear/0" [dtype=float, shape="(4096,)"];
138-
"classifier/0/linear/0" -> "classifier/1/relu_/0" [dtype=float, shape="(1, 4096)"];
139-
"classifier/1/relu_/0" -> "classifier/2/dropout/0" [dtype=float, shape="(1, 4096)"];
140-
"classifier/2/dropout/0" -> "classifier/3/linear/0" [dtype=float, shape="(1, 4096)"];
141-
"classifier.3.weight" -> "classifier/3/linear/0" [dtype=float, shape="(4096, 4096)"];
142-
"classifier.3.bias" -> "classifier/3/linear/0" [dtype=float, shape="(4096,)"];
143-
"classifier/3/linear/0" -> "classifier/4/relu_/0" [dtype=float, shape="(1, 4096)"];
144-
"classifier/4/relu_/0" -> "classifier/5/dropout/0" [dtype=float, shape="(1, 4096)"];
145-
"classifier/5/dropout/0" -> "classifier/6/linear/0" [dtype=float, shape="(1, 4096)"];
146-
"classifier.6.weight" -> "classifier/6/linear/0" [dtype=float, shape="(1000, 4096)"];
147-
"classifier.6.bias" -> "classifier/6/linear/0" [dtype=float, shape="(1000,)"];
148-
"classifier/6/linear/0" -> output [dtype=float, shape="(1, 1000)"];
76+
x -> "features/0/conv2d/0" [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 3, 32, 32)"];
77+
"features.0.weight" -> "features/0/conv2d/0" [dtype=float, in_port_id=1, out_port_id=0, shape="(64, 3, 3, 3)"];
78+
"features.0.bias" -> "features/0/conv2d/0" [dtype=float, in_port_id=2, out_port_id=0, shape="(64,)"];
79+
"features/0/conv2d/0" -> "features/1/relu_/0" [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 64, 32, 32)"];
80+
"features/1/relu_/0" -> "features/2/conv2d/0" [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 64, 32, 32)"];
81+
"features.2.weight" -> "features/2/conv2d/0" [dtype=float, in_port_id=1, out_port_id=0, shape="(64, 64, 3, 3)"];
82+
"features.2.bias" -> "features/2/conv2d/0" [dtype=float, in_port_id=2, out_port_id=0, shape="(64,)"];
83+
"features/2/conv2d/0" -> "features/3/relu_/0" [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 64, 32, 32)"];
84+
"features/3/relu_/0" -> "features/4/max_pool2d/0" [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 64, 32, 32)"];
85+
"features/4/max_pool2d/0" -> "features/5/conv2d/0" [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 64, 16, 16)"];
86+
"features.5.weight" -> "features/5/conv2d/0" [dtype=float, in_port_id=1, out_port_id=0, shape="(128, 64, 3, 3)"];
87+
"features.5.bias" -> "features/5/conv2d/0" [dtype=float, in_port_id=2, out_port_id=0, shape="(128,)"];
88+
"features/5/conv2d/0" -> "features/6/relu_/0" [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 128, 16, 16)"];
89+
"features/6/relu_/0" -> "features/7/conv2d/0" [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 128, 16, 16)"];
90+
"features.7.weight" -> "features/7/conv2d/0" [dtype=float, in_port_id=1, out_port_id=0, shape="(128, 128, 3, 3)"];
91+
"features.7.bias" -> "features/7/conv2d/0" [dtype=float, in_port_id=2, out_port_id=0, shape="(128,)"];
92+
"features/7/conv2d/0" -> "features/8/relu_/0" [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 128, 16, 16)"];
93+
"features/8/relu_/0" -> "features/9/max_pool2d/0" [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 128, 16, 16)"];
94+
"features/9/max_pool2d/0" -> "features/10/conv2d/0" [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 128, 8, 8)"];
95+
"features.10.weight" -> "features/10/conv2d/0" [dtype=float, in_port_id=1, out_port_id=0, shape="(256, 128, 3, 3)"];
96+
"features.10.bias" -> "features/10/conv2d/0" [dtype=float, in_port_id=2, out_port_id=0, shape="(256,)"];
97+
"features/10/conv2d/0" -> "features/11/relu_/0" [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 256, 8, 8)"];
98+
"features/11/relu_/0" -> "features/12/conv2d/0" [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 256, 8, 8)"];
99+
"features.12.weight" -> "features/12/conv2d/0" [dtype=float, in_port_id=1, out_port_id=0, shape="(256, 256, 3, 3)"];
100+
"features.12.bias" -> "features/12/conv2d/0" [dtype=float, in_port_id=2, out_port_id=0, shape="(256,)"];
101+
"features/12/conv2d/0" -> "features/13/relu_/0" [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 256, 8, 8)"];
102+
"features/13/relu_/0" -> "features/14/conv2d/0" [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 256, 8, 8)"];
103+
"features.14.weight" -> "features/14/conv2d/0" [dtype=float, in_port_id=1, out_port_id=0, shape="(256, 256, 3, 3)"];
104+
"features.14.bias" -> "features/14/conv2d/0" [dtype=float, in_port_id=2, out_port_id=0, shape="(256,)"];
105+
"features/14/conv2d/0" -> "features/15/relu_/0" [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 256, 8, 8)"];
106+
"features/15/relu_/0" -> "features/16/max_pool2d/0" [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 256, 8, 8)"];
107+
"features/16/max_pool2d/0" -> "features/17/conv2d/0" [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 256, 4, 4)"];
108+
"features.17.weight" -> "features/17/conv2d/0" [dtype=float, in_port_id=1, out_port_id=0, shape="(512, 256, 3, 3)"];
109+
"features.17.bias" -> "features/17/conv2d/0" [dtype=float, in_port_id=2, out_port_id=0, shape="(512,)"];
110+
"features/17/conv2d/0" -> "features/18/relu_/0" [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 512, 4, 4)"];
111+
"features/18/relu_/0" -> "features/19/conv2d/0" [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 512, 4, 4)"];
112+
"features.19.weight" -> "features/19/conv2d/0" [dtype=float, in_port_id=1, out_port_id=0, shape="(512, 512, 3, 3)"];
113+
"features.19.bias" -> "features/19/conv2d/0" [dtype=float, in_port_id=2, out_port_id=0, shape="(512,)"];
114+
"features/19/conv2d/0" -> "features/20/relu_/0" [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 512, 4, 4)"];
115+
"features/20/relu_/0" -> "features/21/conv2d/0" [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 512, 4, 4)"];
116+
"features.21.weight" -> "features/21/conv2d/0" [dtype=float, in_port_id=1, out_port_id=0, shape="(512, 512, 3, 3)"];
117+
"features.21.bias" -> "features/21/conv2d/0" [dtype=float, in_port_id=2, out_port_id=0, shape="(512,)"];
118+
"features/21/conv2d/0" -> "features/22/relu_/0" [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 512, 4, 4)"];
119+
"features/22/relu_/0" -> "features/23/max_pool2d/0" [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 512, 4, 4)"];
120+
"features/23/max_pool2d/0" -> "features/24/conv2d/0" [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 512, 2, 2)"];
121+
"features.24.weight" -> "features/24/conv2d/0" [dtype=float, in_port_id=1, out_port_id=0, shape="(512, 512, 3, 3)"];
122+
"features.24.bias" -> "features/24/conv2d/0" [dtype=float, in_port_id=2, out_port_id=0, shape="(512,)"];
123+
"features/24/conv2d/0" -> "features/25/relu_/0" [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 512, 2, 2)"];
124+
"features/25/relu_/0" -> "features/26/conv2d/0" [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 512, 2, 2)"];
125+
"features.26.weight" -> "features/26/conv2d/0" [dtype=float, in_port_id=1, out_port_id=0, shape="(512, 512, 3, 3)"];
126+
"features.26.bias" -> "features/26/conv2d/0" [dtype=float, in_port_id=2, out_port_id=0, shape="(512,)"];
127+
"features/26/conv2d/0" -> "features/27/relu_/0" [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 512, 2, 2)"];
128+
"features/27/relu_/0" -> "features/28/conv2d/0" [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 512, 2, 2)"];
129+
"features.28.weight" -> "features/28/conv2d/0" [dtype=float, in_port_id=1, out_port_id=0, shape="(512, 512, 3, 3)"];
130+
"features.28.bias" -> "features/28/conv2d/0" [dtype=float, in_port_id=2, out_port_id=0, shape="(512,)"];
131+
"features/28/conv2d/0" -> "features/29/relu_/0" [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 512, 2, 2)"];
132+
"features/29/relu_/0" -> "features/30/max_pool2d/0" [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 512, 2, 2)"];
133+
"features/30/max_pool2d/0" -> "avgpool/adaptive_avg_pool2d/0" [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 512, 1, 1)"];
134+
"avgpool/adaptive_avg_pool2d/0" -> "/flatten/0" [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 512, 7, 7)"];
135+
"/flatten/0" -> "classifier/0/linear/0" [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 25088)"];
136+
"classifier.0.weight" -> "classifier/0/linear/0" [dtype=float, in_port_id=1, out_port_id=0, shape="(4096, 25088)"];
137+
"classifier.0.bias" -> "classifier/0/linear/0" [dtype=float, in_port_id=2, out_port_id=0, shape="(4096,)"];
138+
"classifier/0/linear/0" -> "classifier/1/relu_/0" [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 4096)"];
139+
"classifier/1/relu_/0" -> "classifier/2/dropout/0" [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 4096)"];
140+
"classifier/2/dropout/0" -> "classifier/3/linear/0" [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 4096)"];
141+
"classifier.3.weight" -> "classifier/3/linear/0" [dtype=float, in_port_id=1, out_port_id=0, shape="(4096, 4096)"];
142+
"classifier.3.bias" -> "classifier/3/linear/0" [dtype=float, in_port_id=2, out_port_id=0, shape="(4096,)"];
143+
"classifier/3/linear/0" -> "classifier/4/relu_/0" [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 4096)"];
144+
"classifier/4/relu_/0" -> "classifier/5/dropout/0" [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 4096)"];
145+
"classifier/5/dropout/0" -> "classifier/6/linear/0" [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 4096)"];
146+
"classifier.6.weight" -> "classifier/6/linear/0" [dtype=float, in_port_id=1, out_port_id=0, shape="(1000, 4096)"];
147+
"classifier.6.bias" -> "classifier/6/linear/0" [dtype=float, in_port_id=2, out_port_id=0, shape="(1000,)"];
148+
"classifier/6/linear/0" -> output [dtype=float, in_port_id=0, out_port_id=0, shape="(1, 1000)"];
149149
}

0 commit comments

Comments
 (0)