forked from openvinotoolkit/open_model_zoo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathie_module.py
67 lines (53 loc) · 2.24 KB
/
ie_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
"""
Copyright (c) 2018-2024 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import logging as log
from openvino import AsyncInferQueue
class Module:
def __init__(self, core, model_path, model_type):
self.core = core
self.model_type = model_type
log.info('Reading {} model {}'.format(model_type, model_path))
self.model = core.read_model(model_path)
self.model_path = model_path
self.active_requests = 0
self.clear()
def deploy(self, device, max_requests=1):
self.max_requests = max_requests
compiled_model = self.core.compile_model(self.model, device)
self.output_tensor = compiled_model.outputs[0]
self.infer_queue = AsyncInferQueue(compiled_model, self.max_requests)
self.infer_queue.set_callback(self.completion_callback)
log.info('The {} model {} is loaded to {}'.format(self.model_type, self.model_path, device))
def completion_callback(self, infer_request, id):
self.outputs[id] = infer_request.results[self.output_tensor]
def enqueue(self, input):
if self.max_requests <= self.active_requests:
log.warning('Processing request rejected - too many requests')
return False
self.infer_queue.start_async(input, self.active_requests)
self.active_requests += 1
return True
def wait(self):
if self.active_requests <= 0:
return
self.infer_queue.wait_all()
self.active_requests = 0
def get_outputs(self):
self.wait()
return [v for _, v in sorted(self.outputs.items())]
def clear(self):
self.outputs = {}
def infer(self, inputs):
self.clear()
self.start_async(*inputs)
return self.postprocess()