-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinteractions.c
242 lines (208 loc) · 8.7 KB
/
interactions.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
#include "interactions.h"
#include "conveyor.h"
extern struct human_population_newborn *h_pop_newb;
extern struct human_population_toddler_normal *h_pop_tod_n;
extern struct human_population_toddler_sicklecell *h_pop_tod_s;
extern struct human_population_adult *h_pop_adult;
extern struct mosquito_population *m_pop;
/* Variables that are filled with precomputed values of round constants */
double human_population_c;
double mosquito_population_c;
double get_prob_bite_human_c;
double get_prob_bit_c;
double p_vector_c;
double p_host_c;
static double human_population( void )
{
return h_pop_newb->uninfected + h_pop_tod_n->uninfected + h_pop_tod_n->tainted + h_pop_tod_n->hosts + h_pop_tod_n->pimmune + h_pop_tod_n->remission + h_pop_tod_s->uninfected + h_pop_tod_s->tainted + h_pop_tod_s->hosts + h_pop_tod_s->pimmune + h_pop_tod_s->remission + h_pop_adult->uninfected + h_pop_adult->tainted + h_pop_adult->hosts + h_pop_adult->pimmune + h_pop_adult->remission;
}
static double mosquito_population( void )
{
return m_pop->uninfected + m_pop->tainted + m_pop->vectors;
}
static double get_prob_bite_human( void )
{
double hsize = human_population();
double msize = mosquito_population();
if ((hsize / msize) >= HEALTHY_HUMAN_MOSQUITO_RATIO)
{
return PROB_BITE_HUMAN;
}
return (1.0 / HEALTHY_HUMAN_MOSQUITO_RATIO) * (hsize / msize) * PROB_BITE_HUMAN;
}
static double get_prob_bit( void )
{
return (mosquito_population() / human_population()) * get_prob_bite_human();
}
/* Probability of a mosquito being a vector */
static double p_vector( void )
{
return m_pop->vectors / mosquito_population();
}
/* Probability of a human being a host */
static double p_host( void )
{
return (h_pop_tod_n->hosts + h_pop_tod_n->pimmune + h_pop_tod_s->hosts + h_pop_tod_s->pimmune + h_pop_adult->hosts + h_pop_adult->pimmune) / human_population();
}
void prepare_round( double td )
{
/* Update conveyor timers */
update_conveyor( h_pop_tod_n->tainted_conv, td );
update_conveyor( h_pop_tod_s->tainted_conv, td );
update_conveyor( h_pop_adult->tainted_conv, td );
update_conveyor( m_pop->tainted_conv, td );
/* Pre-compute population of conveyors */
h_pop_tod_n->tainted = conveyor_get_population( h_pop_tod_n->tainted_conv );
h_pop_tod_s->tainted = conveyor_get_population( h_pop_tod_s->tainted_conv );
h_pop_adult->tainted = conveyor_get_population( h_pop_adult->tainted_conv );
m_pop->tainted = conveyor_get_population( m_pop->tainted_conv );
/* Pre-compute round constants */
human_population_c = human_population();
mosquito_population_c = mosquito_population();
get_prob_bite_human_c = get_prob_bite_human();
get_prob_bit_c = get_prob_bit();
p_vector_c = p_vector();
p_host_c = p_host();
}
/*
* Population-change functions.
* Each function calculates the population of a certain
* group given the previous population state h_pop and
* m_pop and time increment td.
*/
/* Newborn */
double human_newborn_uninfected( double td )
{
//printf("newb(%f) -> %f | ", h_pop_newb->uninfected, h_pop_newb->uninfected * (FROM_NEWBORN_TO_TODDLER));
return h_pop_newb->uninfected
+ (human_population_c * (HUMAN_BIRTH_RATE * td))
- (h_pop_newb->uninfected * (HUMAN_DEATH_RATE * td))
- (h_pop_newb->uninfected * (FROM_NEWBORN_TO_TODDLER * td));
}
/* Normal toddler */
double human_toddler_n_uninfected( double td )
{
//printf("todn(%f) -> %f | ", h_pop_tod_n->uninfected, h_pop_tod_n->uninfected * (FROM_TODDLER_TO_ADULT * td));
return h_pop_tod_n->uninfected
+ (h_pop_newb->uninfected * (FROM_NEWBORN_TO_TODDLER * td) * (1 - SICKLE_CELL_RATE))
+ (h_pop_tod_n->hosts * (RECOVERY_RATE * td))
- (h_pop_tod_n->uninfected * (HUMAN_DEATH_RATE * td))
- (h_pop_tod_n->uninfected * (FROM_TODDLER_TO_ADULT * td))
- (h_pop_tod_n->uninfected * ((get_prob_bit_c * td) * p_vector_c));
}
void human_toddler_n_tainted( double td )
{
conveyor_add_influx( (h_pop_tod_n->uninfected + h_pop_tod_n->remission) * (get_prob_bit_c * td) * p_vector_c, h_pop_tod_n->tainted_conv );
}
double human_toddler_n_hosts( double td )
{
return h_pop_tod_n->hosts
+ conveyor_get_outflux( h_pop_tod_n->tainted_conv )
+ (h_pop_tod_n->remission * (RELAPSE_RATE * td))
- (h_pop_tod_n->hosts
* ((PIMMUNITY_RATE + MALARIA_INDUCED_DEATH_RATE_TODDLER + RECOVERY_RATE + HUMAN_DEATH_RATE + REMISSION_RATE + FROM_TODDLER_TO_ADULT) * td));
}
double human_toddler_n_pimmune( double td )
{
return h_pop_tod_n->pimmune
+ (h_pop_tod_n->hosts * (PIMMUNITY_RATE * td))
- (h_pop_tod_n->pimmune * ((FROM_TODDLER_TO_ADULT + HUMAN_DEATH_RATE) * td));
}
double human_toddler_n_remission( double td)
{
return h_pop_tod_n->remission
+ (h_pop_tod_n->hosts * (REMISSION_RATE * td))
- (h_pop_tod_n->remission * ((RELAPSE_RATE + HUMAN_DEATH_RATE + FROM_TODDLER_TO_ADULT) * td))
- (h_pop_tod_n->remission * (get_prob_bit_c * td) * p_vector_c);
}
/* Toddler with sickle cell anemia*/
double human_toddler_s_uninfected( double td )
{
//printf("tods(%f) -> %f\n", h_pop_tod_s->uninfected, h_pop_tod_s->uninfected * (FROM_TODDLER_TO_ADULT * td));
return h_pop_tod_s->uninfected
+ (h_pop_newb->uninfected * (FROM_NEWBORN_TO_TODDLER * td) * (SICKLE_CELL_RATE))
+ (h_pop_tod_s->hosts * (RECOVERY_RATE * td))
- (h_pop_tod_s->uninfected * (HUMAN_DEATH_RATE * td))
- (h_pop_tod_s->uninfected * (FROM_TODDLER_TO_ADULT * td))
- (h_pop_tod_s->uninfected * ((get_prob_bit_c * td) * p_vector_c));
}
void human_toddler_s_tainted( double td )
{
conveyor_add_influx( (h_pop_tod_s->uninfected + h_pop_tod_s->remission) * (get_prob_bit_c * td) * p_vector_c, h_pop_tod_s->tainted_conv );
}
double human_toddler_s_hosts( double td )
{
return h_pop_tod_s->hosts
+ conveyor_get_outflux( h_pop_tod_s->tainted_conv )
+ (h_pop_tod_s->remission * (RELAPSE_RATE * td))
- (h_pop_tod_s->hosts
* ((PIMMUNITY_RATE + RECOVERY_RATE + HUMAN_DEATH_RATE + REMISSION_RATE + FROM_TODDLER_TO_ADULT) * td))
- (h_pop_tod_s->hosts * (MALARIA_INDUCED_DEATH_RATE_TODDLER * (1.0 - SICKLE_CELL_MALARIA_SURVIVAL_RATE) * td));
}
double human_toddler_s_pimmune( double td )
{
return h_pop_tod_s->pimmune
+ (h_pop_tod_s->hosts * (PIMMUNITY_RATE * td))
- (h_pop_tod_s->pimmune * ((FROM_TODDLER_TO_ADULT + HUMAN_DEATH_RATE) * td));
}
double human_toddler_s_remission( double td)
{
return h_pop_tod_s->remission
+ (h_pop_tod_s->hosts * (REMISSION_RATE * td))
- (h_pop_tod_s->remission * ((RELAPSE_RATE + HUMAN_DEATH_RATE + FROM_TODDLER_TO_ADULT) * td))
- (h_pop_tod_s->remission * (get_prob_bit_c * td) * p_vector_c);
}
/* Adults */
double human_adult_uninfected( double td)
{
return h_pop_adult->uninfected
+ ((h_pop_tod_n->uninfected + h_pop_tod_s->uninfected) * (FROM_TODDLER_TO_ADULT * td))
+ (h_pop_adult->hosts * (RECOVERY_RATE * td))
- (h_pop_adult->uninfected * (HUMAN_DEATH_RATE * td))
- (h_pop_adult->uninfected * ((get_prob_bit_c * td) * p_vector_c));
}
void human_adult_tainted( double td )
{
conveyor_add_influx( (h_pop_adult->uninfected + h_pop_adult->remission) * (get_prob_bit_c * td) * p_vector_c, h_pop_adult->tainted_conv );
}
double human_adult_hosts( double td )
{
return h_pop_adult->hosts
+ ((h_pop_tod_n->hosts + h_pop_tod_s->hosts) * (FROM_TODDLER_TO_ADULT * td))
+ conveyor_get_outflux( h_pop_adult->tainted_conv )
+ (h_pop_adult->remission * (RELAPSE_RATE * td))
- (h_pop_adult->hosts
* (( PIMMUNITY_RATE + MALARIA_INDUCED_DEATH_RATE + RECOVERY_RATE + HUMAN_DEATH_RATE + REMISSION_RATE) * td));
}
double human_adult_pimmune( double td )
{
return h_pop_adult->pimmune
+ ((h_pop_tod_n->pimmune + h_pop_tod_s->pimmune) * (FROM_TODDLER_TO_ADULT * td))
+ (h_pop_adult->hosts * (PIMMUNITY_RATE * td))
- (h_pop_adult->pimmune * (HUMAN_DEATH_RATE * td));
}
double human_adult_remission( double td )
{
return h_pop_adult->remission
+ ((h_pop_tod_n->remission + h_pop_tod_s->remission) * (FROM_TODDLER_TO_ADULT * td))
+ (h_pop_adult->hosts * (REMISSION_RATE * td))
- (h_pop_adult->remission * ((RELAPSE_RATE + HUMAN_DEATH_RATE) * td))
- (h_pop_adult->remission * (get_prob_bit_c * td) * p_vector_c);
}
double mosquito_uninfected( double td )
{
return m_pop->uninfected
+ ( mosquito_population_c * (MOSQUITO_BIRTH_RATE * td) )
- ( m_pop->uninfected * (MOSQUITO_DEATH_RATE * td))
- ( m_pop->uninfected * ((get_prob_bite_human_c * td) * p_host_c));
}
void mosquito_tainted( double td )
{
conveyor_add_influx( m_pop->uninfected * ((get_prob_bite_human_c * td) * p_host_c) , m_pop->tainted_conv );
}
double mosquito_vectors( double td )
{
return m_pop->vectors
+ conveyor_get_outflux( m_pop->tainted_conv )
- (m_pop->vectors * (MOSQUITO_DEATH_RATE * td));
}