-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathZhang_InAndOut.m
263 lines (242 loc) · 11.2 KB
/
Zhang_InAndOut.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
function Zhang_InAndOut
% 本m文件用来求解内参数和外参数并优化。
% 求解过称共用六幅图像,每幅图像取10个点。先求出每个图像的单应矩阵,然后把六个单应矩阵和在一起,
% 由V*b=0解出b。再然后用b分解出内参数矩阵A,最后由A和单应矩阵求出外参数矩阵
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 以下从文本中读出世界坐标和对应的图像坐标 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
n = 24;
M=load('board.txt'); %读取世界坐标
M=[M';ones(1,49)];
m_all=load('speckle_150_20_snd_100.txt'); %读取关键点坐标
m_one=ones(3,49,n);
for i=1:1:n
m_temp = m_all((i-1)*49+1:i*49,:);
m_one(:,:,i) = [m_temp';ones(1,49)];
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 以下求解单应矩阵并解出b %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
H = ones(3,3,n); %每幅图一个单应矩阵
for i=1:1:n
H(:,:,i)=homography(m_one(:,:,i),M);
end
V=ones(2*n,6); %V*b=0
for i=1:n %求V
V(2*i-1,:)=[H(1,1,i)*H(1,2,i) H(1,1,i)*H(2,2,i)+H(2,1,i)*H(1,2,i) H(2,1,i)*H(2,2,i) ...
H(3,1,i)*H(1,2,i)+H(1,1,i)*H(3,2,i) H(3,1,i)*H(2,2,i)+H(2,1,i)*H(3,2,i) H(3,1,i)*H(3,2,i)];
p1=[H(1,1,i)^2 H(1,1,i)*H(2,1,i)+H(2,1,i)*H(1,1,i) H(2,1,i)^2 H(3,1,i)*H(1,1,i)+H(1,1,i)*H(3,1,i) H(3,1,i)*H(2,1,i)+H(2,1,i)*H(3,1,i) H(3,1,i)^2];
p2=[H(1,2,i)^2 H(1,2,i)*H(2,2,i)+H(2,2,i)*H(1,2,i) H(2,2,i)^2 H(3,2,i)*H(1,2,i)+H(1,2,i)*H(3,2,i) H(3,2,i)*H(2,2,i)+H(2,2,i)*H(3,2,i) H(3,2,i)^2];
V(2*i,:)=p1-p2;
end;
[u s v]=svd(V); %用正交分解解出b
b=v(:,6);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 以下分解内参数矩阵 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
cy=(b(2)*b(4)-b(1)*b(5))/(b(1)*b(3)-b(2)^2);
lamda=b(6)-(b(4)^2+(b(2)*b(4)-b(1)*b(5))/(b(1)*b(3)-b(2)^2)*(b(2)*b(4)-b(1)*b(5)))/b(1);
kx=sqrt(lamda/b(1));
ky=sqrt((lamda*b(1))/(b(1)*b(3)-b(2)^2));
gama=-(b(2)*kx^2*ky)/lamda;
cx=(gama*cy)/kx-(b(4)*kx^2)/lamda;
%A=[kx gama cx;0 ky cy;0 0 1]; %求出内参数矩阵
A=[kx 0 cx;0 ky cy;0 0 1] %求出内参数矩阵
mp=ones(3,49,n); %图像坐标矩阵(合成三维形式,方便循环操作)
mp = m_one;
%para1=[kx gama cx ky cy ];
%A = [15037.6, 0, 1393.4; 0, 15085.2, 1153.8; 0, 0, 1]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 以下求解外参数矩阵 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
inv(A)*H(:,1,1);
inv(A)*H(:,2,1);
q1=(norm(inv(A)*H(:,1,1))+norm(inv(A)*H(:,2,1)))/2;
q1=(norm(inv(A)*H(:,1,1),2)+norm(inv(A)*H(:,2,1),2))/2;
R=[];
Rm=[];
for i=1:n
q1=(norm(inv(A)*H(:,1,i))+norm(inv(A)*H(:,2,i)))/2; %下面求解外参数矩阵
r1=(1/q1)*inv(A)*H(:,1,i);
r2=(1/q1)*inv(A)*H(:,2,i);
r3=cross(r1,r2);
RL=[r1 r2 r3];
[u s v]=svd(RL);
RL=u*v'; %旋转矩阵正交化
p=(1/q1)*inv(A)*H(:,3,i);
RT=[r1 r2 p];
R=[R;RT];
% rotationVectors = vision.internal.calibration.rodriguesMatrixToVector(RL)
% p;
% (RL-RL')/2
sq = sqrt(RL(3,2)^2+RL(3,3)^2);
Q1 = atan2(RL(3,2),RL(3,3));
Q2 = atan2(-RL(3,1),sq);
Q3 = atan2(RL(2,1),RL(1,1));
% r=[cos(Q2)*cos(Q3) sin(Q1)*sin(Q2)*cos(Q3)-cos(Q1)*sin(Q3) cos(Q1)*sin(Q2)*cos(Q3)+sin(Q1)*sin(Q3); %旋转矩阵
% cos(Q2)*sin(Q3) sin(Q1)*sin(Q2)*sin(Q3)+cos(Q1)*cos(Q3) cos(Q1)*sin(Q2)*sin(Q3)-sin(Q1)*cos(Q3);
% -sin(Q2) sin(Q1)*cos(Q2) cos(Q1)*cos(Q2)];
% r13=RL(1,3);
% r12=RL(1,2);
% r23=RL(2,3);
% Q1=-asin(r13); %分解出旋转矩阵中的独立变量,即三个转角
% Q2=asin(r12/cos(Q1));
% Q3=asin(r23/cos(Q1));
[Q1 Q2 Q3]';
p;
R_new=[Q1,Q2,Q3,p'];
% R_new=[rotationVectors',p'];
Rm=[Rm , R_new];
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 闭式解的重投影误差 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% R=[];
%
% for i=1:n %下面用来恢复出外参数矩阵
% R_new=Rm([(i-1)*6+1 : (i-1)*6+6] );
% Q1=R_new(1);
% Q2=R_new(2);
% Q3=R_new(3);
% TL=R_new([4:6])';
% RL=[ cos(Q2)*cos(Q1) sin(Q2)*cos(Q1) -sin(Q1) ; %旋转矩阵
% -sin(Q2)*cos(Q3)+cos(Q2)*sin(Q1)*sin(Q3) cos(Q2)*cos(Q3)+sin(Q2)*sin(Q1)*sin(Q3) cos(Q1)*sin(Q3) ;
% sin(Q2)*sin(Q3)+cos(Q2)*sin(Q1)*cos(Q3) -cos(Q2)*sin(Q3)+sin(Q2)*sin(Q1)*cos(Q3) cos(Q1)*cos(Q3)];
% RT=[RL(:,1:2) , TL];
% R=[R;RT];
% end
res = ones(3,49,n);
for i=1:n
RT=R([(i-1)*3+1 : (i-1)*3+3],:);
x=A*RT*M;
x=[x(1,:)./x(3,:) ; x(2,:)./x(3,:); x(3,:)./x(3,:)]; % 保证最后一列为1
res(:,:,i) = mp(:,:,i)-x;
end
res_sum = zeros(1,98*n);
for i = 1:n
for j = 1:49
res_sum(1,2*((i-1)*49+j)-1) = res(1,j,i);
res_sum(1,2*((i-1)*49+j)) = res(2,j,i);
end
end
res_sum.*res_sum;
xxx=sum(res_sum.*res_sum);
initres = sqrt(sum(res_sum.*res_sum,2)/(n*49))
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 下面进行最终的优化(包括内参数,三个旋转角度,平移向量和畸变系数) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
para=[Rm,A(1,1),A(1,3),A(2,2),A(2,3)];%优化畸变系数,内参数,外参数(平移矩阵和三个转角)
options = optimset('LargeScale','off','Algorithm','levenberg-marquardt','Display','iter');
%options = optimoptions(@lsqnonlin,'Algorithm','levenberg-marquardt',...
% 'TolFun',1.0e-8,...
% 'StepTolerance',1.0e-8,...
% 'Display','iter');
% 'FiniteDifferenceStepSize',2,...
%options = optimoptions('lsqnonlin','FiniteDifferenceType','central');
[x,nor,res] = lsqnonlin( @fun2, para, [],[],options, mp, M, n);
A=[x(n*6+1) 0 x(n*6+2); 0 x(n*6+3) x(n*6+4); 0,0,1];
disp('最终优化过的内参数为');
disp(A);
sqrt(nor/(49*n))
% options = optimset('LargeScale','off','Algorithm','levenberg-marquardt');% 使用lsqnonlin进行非线性最小二乘求解
% [x,norm,res] = lsqnonlin( @fun2, para1 ,[],[],options, mp, M,H,n);
% A=[x(1) x(2) x(3);0 x(4) x(5);0 0 1]; % 得到优化后的内参数矩阵
% norm;
% res;
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % 以下求解畸变系数 %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% D=[]; %D*K=d
% d=[];
% for i=1:6
% s=(1/norm(inv(A)*H(:,1,i))+1/norm(inv(A)*H(:,2,i)))/2;
% rl1=s*inv(A)*H(:,1,i);
% rl2=s*inv(A)*H(:,2,i);
% rl3=cross(rl1,rl2);
% RL=[rl1,rl2,rl3];
% [U,S,V] = svd(RL);
% RL=U*V'; %保证旋转矩阵为标准正交矩阵
% TL=s*inv(A)*H(:,3,i);
% RT=[rl1,rl2,TL]; %单应矩阵
% XY=RT*M; %得到Xc、Yc、Zc
% UV=A*XY; %计算出图像中的坐标
% UV=[UV(1,:)./UV(3,:); UV(2,:)./UV(3,:); UV(3,:)./UV(3,:)];%最后一行规‘1’
% XY=[XY(1,:)./XY(3,:); XY(2,:)./XY(3,:); XY(3,:)./XY(3,:)];%x=Xc/Zc,y=Yc/Zc,r=x^2+y^2
% for j=1:10
% D=[D; ((UV(1,j)-u0)*( (XY(1,j))^2 + (XY(2,j))^2 )) , ((UV(1,j)-u0)*( (XY(1,j))^2 + (XY(2,j))^2 )^2) ;
% ((UV(2,j)-v0)*( (XY(1,j))^2 + (XY(2,j))^2 )) , ((UV(2,j)-v0)*( (XY(1,j))^2 + (XY(2,j))^2 )^2) ];
%
% d=[d; (mp(1,j,i)-UV(1,j)) ; (mp(2,j,i)-UV(2,j))];
% end
% end
% k=inv(D'*D)*D'*d; %求出畸变系数
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % 下面进行进一步的优化(包括内参数和畸变系数) %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% para2=[k(1),k(2),A(1,1),A(1,2),u0,A(2,2),v0];%对畸变系数和内参数矩阵进行优化
% options = optimset('LargeScale','off','Algorithm','levenberg-marquardt');
% x= lsqnonlin( @fun3,para2,[],[],options,mp,M,H);
% k1=x(1);
% k2=x(2);
% K=[k1;k2];
% A=[x(3) x(4) x(5); 0 x(6) x(7); 0,0,1];
% disp(' ');
% disp('优化前的内参数矩阵为:');
% disp(A1);
% disp('优化前的畸变系数矩阵为:');
% disp(k);
% disp('优化后的内参数矩阵为:');
% disp(A);
% disp('优化后的畸变系数矩阵为:');
% disp(K);
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 下面进行最终的优化(包括内参数,三个旋转角度,平移向量和畸变系数) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% D=[];
% d=[];
% Rm=[];
% for i=1:6 %共用了六幅图像
% s=(norm(inv(A)*H(:,1,i))+norm(inv(A)*H(:,2,i)))/2;
% rl1=(1/s)*inv(A)*H(:,1,i);
% rl2=(1/s)*inv(A)*H(:,2,i);
% rl3=cross(rl1,rl2);
% RL=[rl1,rl2,rl3];
% [U,S,V] = svd(RL);
% TL=(1/s)*inv(A)*H(:,3,i);
% RT=[rl1,rl2,TL];
% XY=RT*M;
% UV=A*XY;
% UV=[UV(1,:)./UV(3,:); UV(2,:)./UV(3,:); UV(3,:)./UV(3,:)];
% XY=[XY(1,:)./XY(3,:); XY(2,:)./XY(3,:); XY(3,:)./XY(3,:)];
% for j=1:10 %每幅图取十个点
% D=[D; ((UV(1,j)-u0)*( (XY(1,j))^2 + (XY(2,j))^2 )) , ((UV(1,j)-u0)*( (XY(1,j))^2 + (XY(2,j))^2 )^2) ;
% ((UV(2,j)-v0)*( (XY(1,j))^2 + (XY(2,j))^2 )) , ((UV(2,j)-v0)*( (XY(1,j))^2 + (XY(2,j))^2 )^2) ];
% d=[d; (mp(1,j,i)-UV(1,j)) ; (mp(2,j,i)-UV(2,j))];
% end
% r13=RL(1,3);
% r12=RL(1,2);
% r23=RL(2,3);
% Q1=-asin(r13); %分解出旋转矩阵中的独立变量,即三个转角
% Q2=asin(r12/cos(Q1));
% Q3=asin(r23/cos(Q1));
% R_new=[Q1,Q2,Q3,TL'];
% Rm=[Rm , R_new];
% end
% k=inv(D'*D)*D'*d;
% para3=[Rm,k(1),k(2),A(1,1),A(1,2),A(1,3),A(2,2),A(2,3)];%优化畸变系数,内参数,外参数(平移矩阵和三个转角)
% options = optimset('LargeScale','off','Algorithm','levenberg-marquardt');
% x = lsqnonlin( @fun4, para3, [],[],options, mp, M);
% k=[x(6*6+1);x(6*6+2)];
% A=[x(6*6+3) x(6*6+4) x(6*6+5); 0 x(6*6+6) x(6*6+7); 0,0,1];
% disp('最终优化过的畸变系数为');
% disp(k);
% disp('最终优化过的内参数为');
% disp(A);
%
%
%
%