-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_channel_is_tech.html
1946 lines (1937 loc) · 344 KB
/
data_channel_is_tech.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1">
<style type="text/css">
@font-face {
font-family: octicons-link;
src: url(data:font/woff;charset=utf-8;base64,d09GRgABAAAAAAZwABAAAAAACFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEU0lHAAAGaAAAAAgAAAAIAAAAAUdTVUIAAAZcAAAACgAAAAoAAQAAT1MvMgAAAyQAAABJAAAAYFYEU3RjbWFwAAADcAAAAEUAAACAAJThvmN2dCAAAATkAAAABAAAAAQAAAAAZnBnbQAAA7gAAACyAAABCUM+8IhnYXNwAAAGTAAAABAAAAAQABoAI2dseWYAAAFsAAABPAAAAZwcEq9taGVhZAAAAsgAAAA0AAAANgh4a91oaGVhAAADCAAAABoAAAAkCA8DRGhtdHgAAAL8AAAADAAAAAwGAACfbG9jYQAAAsAAAAAIAAAACABiATBtYXhwAAACqAAAABgAAAAgAA8ASm5hbWUAAAToAAABQgAAAlXu73sOcG9zdAAABiwAAAAeAAAAME3QpOBwcmVwAAAEbAAAAHYAAAB/aFGpk3jaTY6xa8JAGMW/O62BDi0tJLYQincXEypYIiGJjSgHniQ6umTsUEyLm5BV6NDBP8Tpts6F0v+k/0an2i+itHDw3v2+9+DBKTzsJNnWJNTgHEy4BgG3EMI9DCEDOGEXzDADU5hBKMIgNPZqoD3SilVaXZCER3/I7AtxEJLtzzuZfI+VVkprxTlXShWKb3TBecG11rwoNlmmn1P2WYcJczl32etSpKnziC7lQyWe1smVPy/Lt7Kc+0vWY/gAgIIEqAN9we0pwKXreiMasxvabDQMM4riO+qxM2ogwDGOZTXxwxDiycQIcoYFBLj5K3EIaSctAq2kTYiw+ymhce7vwM9jSqO8JyVd5RH9gyTt2+J/yUmYlIR0s04n6+7Vm1ozezUeLEaUjhaDSuXHwVRgvLJn1tQ7xiuVv/ocTRF42mNgZGBgYGbwZOBiAAFGJBIMAAizAFoAAABiAGIAznjaY2BkYGAA4in8zwXi+W2+MjCzMIDApSwvXzC97Z4Ig8N/BxYGZgcgl52BCSQKAA3jCV8CAABfAAAAAAQAAEB42mNgZGBg4f3vACQZQABIMjKgAmYAKEgBXgAAeNpjYGY6wTiBgZWBg2kmUxoDA4MPhGZMYzBi1AHygVLYQUCaawqDA4PChxhmh/8ODDEsvAwHgMKMIDnGL0x7gJQCAwMAJd4MFwAAAHjaY2BgYGaA4DAGRgYQkAHyGMF8NgYrIM3JIAGVYYDT+AEjAwuDFpBmA9KMDEwMCh9i/v8H8sH0/4dQc1iAmAkALaUKLgAAAHjaTY9LDsIgEIbtgqHUPpDi3gPoBVyRTmTddOmqTXThEXqrob2gQ1FjwpDvfwCBdmdXC5AVKFu3e5MfNFJ29KTQT48Ob9/lqYwOGZxeUelN2U2R6+cArgtCJpauW7UQBqnFkUsjAY/kOU1cP+DAgvxwn1chZDwUbd6CFimGXwzwF6tPbFIcjEl+vvmM/byA48e6tWrKArm4ZJlCbdsrxksL1AwWn/yBSJKpYbq8AXaaTb8AAHja28jAwOC00ZrBeQNDQOWO//sdBBgYGRiYWYAEELEwMTE4uzo5Zzo5b2BxdnFOcALxNjA6b2ByTswC8jYwg0VlNuoCTWAMqNzMzsoK1rEhNqByEyerg5PMJlYuVueETKcd/89uBpnpvIEVomeHLoMsAAe1Id4AAAAAAAB42oWQT07CQBTGv0JBhagk7HQzKxca2sJCE1hDt4QF+9JOS0nbaaYDCQfwCJ7Au3AHj+LO13FMmm6cl7785vven0kBjHCBhfpYuNa5Ph1c0e2Xu3jEvWG7UdPDLZ4N92nOm+EBXuAbHmIMSRMs+4aUEd4Nd3CHD8NdvOLTsA2GL8M9PODbcL+hD7C1xoaHeLJSEao0FEW14ckxC+TU8TxvsY6X0eLPmRhry2WVioLpkrbp84LLQPGI7c6sOiUzpWIWS5GzlSgUzzLBSikOPFTOXqly7rqx0Z1Q5BAIoZBSFihQYQOOBEdkCOgXTOHA07HAGjGWiIjaPZNW13/+lm6S9FT7rLHFJ6fQbkATOG1j2OFMucKJJsxIVfQORl+9Jyda6Sl1dUYhSCm1dyClfoeDve4qMYdLEbfqHf3O/AdDumsjAAB42mNgYoAAZQYjBmyAGYQZmdhL8zLdDEydARfoAqIAAAABAAMABwAKABMAB///AA8AAQAAAAAAAAAAAAAAAAABAAAAAA==) format('woff');
}
body {
-webkit-text-size-adjust: 100%;
text-size-adjust: 100%;
color: #333;
font-family: "Helvetica Neue", Helvetica, "Segoe UI", Arial, freesans, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol";
font-size: 16px;
line-height: 1.6;
word-wrap: break-word;
}
a {
background-color: transparent;
}
a:active,
a:hover {
outline: 0;
}
strong {
font-weight: bold;
}
h1 {
font-size: 2em;
margin: 0.67em 0;
}
img {
border: 0;
}
hr {
box-sizing: content-box;
height: 0;
}
pre {
overflow: auto;
}
code,
kbd,
pre {
font-family: monospace, monospace;
font-size: 1em;
}
input {
color: inherit;
font: inherit;
margin: 0;
}
html input[disabled] {
cursor: default;
}
input {
line-height: normal;
}
input[type="checkbox"] {
box-sizing: border-box;
padding: 0;
}
table {
border-collapse: collapse;
border-spacing: 0;
}
td,
th {
padding: 0;
}
* {
box-sizing: border-box;
}
input {
font: 13px / 1.4 Helvetica, arial, nimbussansl, liberationsans, freesans, clean, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol";
}
a {
color: #4078c0;
text-decoration: none;
}
a:hover,
a:active {
text-decoration: underline;
}
hr {
height: 0;
margin: 15px 0;
overflow: hidden;
background: transparent;
border: 0;
border-bottom: 1px solid #ddd;
}
hr:before {
display: table;
content: "";
}
hr:after {
display: table;
clear: both;
content: "";
}
h1,
h2,
h3,
h4,
h5,
h6 {
margin-top: 15px;
margin-bottom: 15px;
line-height: 1.1;
}
h1 {
font-size: 30px;
}
h2 {
font-size: 21px;
}
h3 {
font-size: 16px;
}
h4 {
font-size: 14px;
}
h5 {
font-size: 12px;
}
h6 {
font-size: 11px;
}
blockquote {
margin: 0;
}
ul,
ol {
padding: 0;
margin-top: 0;
margin-bottom: 0;
}
ol ol,
ul ol {
list-style-type: lower-roman;
}
ul ul ol,
ul ol ol,
ol ul ol,
ol ol ol {
list-style-type: lower-alpha;
}
dd {
margin-left: 0;
}
code {
font-family: Consolas, "Liberation Mono", Menlo, Courier, monospace;
font-size: 12px;
}
pre {
margin-top: 0;
margin-bottom: 0;
font: 12px Consolas, "Liberation Mono", Menlo, Courier, monospace;
}
.select::-ms-expand {
opacity: 0;
}
.octicon {
font: normal normal normal 16px/1 octicons-link;
display: inline-block;
text-decoration: none;
text-rendering: auto;
-webkit-font-smoothing: antialiased;
-moz-osx-font-smoothing: grayscale;
-webkit-user-select: none;
-moz-user-select: none;
-ms-user-select: none;
user-select: none;
}
.octicon-link:before {
content: '\f05c';
}
.markdown-body:before {
display: table;
content: "";
}
.markdown-body:after {
display: table;
clear: both;
content: "";
}
.markdown-body>*:first-child {
margin-top: 0 !important;
}
.markdown-body>*:last-child {
margin-bottom: 0 !important;
}
a:not([href]) {
color: inherit;
text-decoration: none;
}
.anchor {
display: inline-block;
padding-right: 2px;
margin-left: -18px;
}
.anchor:focus {
outline: none;
}
h1,
h2,
h3,
h4,
h5,
h6 {
margin-top: 1em;
margin-bottom: 16px;
font-weight: bold;
line-height: 1.4;
}
h1 .octicon-link,
h2 .octicon-link,
h3 .octicon-link,
h4 .octicon-link,
h5 .octicon-link,
h6 .octicon-link {
color: #000;
vertical-align: middle;
visibility: hidden;
}
h1:hover .anchor,
h2:hover .anchor,
h3:hover .anchor,
h4:hover .anchor,
h5:hover .anchor,
h6:hover .anchor {
text-decoration: none;
}
h1:hover .anchor .octicon-link,
h2:hover .anchor .octicon-link,
h3:hover .anchor .octicon-link,
h4:hover .anchor .octicon-link,
h5:hover .anchor .octicon-link,
h6:hover .anchor .octicon-link {
visibility: visible;
}
h1 {
padding-bottom: 0.3em;
font-size: 2.25em;
line-height: 1.2;
border-bottom: 1px solid #eee;
}
h1 .anchor {
line-height: 1;
}
h2 {
padding-bottom: 0.3em;
font-size: 1.75em;
line-height: 1.225;
border-bottom: 1px solid #eee;
}
h2 .anchor {
line-height: 1;
}
h3 {
font-size: 1.5em;
line-height: 1.43;
}
h3 .anchor {
line-height: 1.2;
}
h4 {
font-size: 1.25em;
}
h4 .anchor {
line-height: 1.2;
}
h5 {
font-size: 1em;
}
h5 .anchor {
line-height: 1.1;
}
h6 {
font-size: 1em;
color: #777;
}
h6 .anchor {
line-height: 1.1;
}
p,
blockquote,
ul,
ol,
dl,
table,
pre {
margin-top: 0;
margin-bottom: 16px;
}
hr {
height: 4px;
padding: 0;
margin: 16px 0;
background-color: #e7e7e7;
border: 0 none;
}
ul,
ol {
padding-left: 2em;
}
ul ul,
ul ol,
ol ol,
ol ul {
margin-top: 0;
margin-bottom: 0;
}
li>p {
margin-top: 16px;
}
dl {
padding: 0;
}
dl dt {
padding: 0;
margin-top: 16px;
font-size: 1em;
font-style: italic;
font-weight: bold;
}
dl dd {
padding: 0 16px;
margin-bottom: 16px;
}
blockquote {
padding: 0 15px;
color: #777;
border-left: 4px solid #ddd;
}
blockquote>:first-child {
margin-top: 0;
}
blockquote>:last-child {
margin-bottom: 0;
}
table {
display: block;
width: 100%;
overflow: auto;
word-break: normal;
word-break: keep-all;
}
table th {
font-weight: bold;
}
table th,
table td {
padding: 6px 13px;
border: 1px solid #ddd;
}
table tr {
background-color: #fff;
border-top: 1px solid #ccc;
}
table tr:nth-child(2n) {
background-color: #f8f8f8;
}
img {
max-width: 100%;
box-sizing: content-box;
background-color: #fff;
}
code {
padding: 0;
padding-top: 0.2em;
padding-bottom: 0.2em;
margin: 0;
font-size: 85%;
background-color: rgba(0,0,0,0.04);
border-radius: 3px;
}
code:before,
code:after {
letter-spacing: -0.2em;
content: "\00a0";
}
pre>code {
padding: 0;
margin: 0;
font-size: 100%;
word-break: normal;
white-space: pre;
background: transparent;
border: 0;
}
.highlight {
margin-bottom: 16px;
}
.highlight pre,
pre {
padding: 16px;
overflow: auto;
font-size: 85%;
line-height: 1.45;
background-color: #f7f7f7;
border-radius: 3px;
}
.highlight pre {
margin-bottom: 0;
word-break: normal;
}
pre {
word-wrap: normal;
}
pre code {
display: inline;
max-width: initial;
padding: 0;
margin: 0;
overflow: initial;
line-height: inherit;
word-wrap: normal;
background-color: transparent;
border: 0;
}
pre code:before,
pre code:after {
content: normal;
}
kbd {
display: inline-block;
padding: 3px 5px;
font-size: 11px;
line-height: 10px;
color: #555;
vertical-align: middle;
background-color: #fcfcfc;
border: solid 1px #ccc;
border-bottom-color: #bbb;
border-radius: 3px;
box-shadow: inset 0 -1px 0 #bbb;
}
.pl-c {
color: #969896;
}
.pl-c1,
.pl-s .pl-v {
color: #0086b3;
}
.pl-e,
.pl-en {
color: #795da3;
}
.pl-s .pl-s1,
.pl-smi {
color: #333;
}
.pl-ent {
color: #63a35c;
}
.pl-k {
color: #a71d5d;
}
.pl-pds,
.pl-s,
.pl-s .pl-pse .pl-s1,
.pl-sr,
.pl-sr .pl-cce,
.pl-sr .pl-sra,
.pl-sr .pl-sre {
color: #183691;
}
.pl-v {
color: #ed6a43;
}
.pl-id {
color: #b52a1d;
}
.pl-ii {
background-color: #b52a1d;
color: #f8f8f8;
}
.pl-sr .pl-cce {
color: #63a35c;
font-weight: bold;
}
.pl-ml {
color: #693a17;
}
.pl-mh,
.pl-mh .pl-en,
.pl-ms {
color: #1d3e81;
font-weight: bold;
}
.pl-mq {
color: #008080;
}
.pl-mi {
color: #333;
font-style: italic;
}
.pl-mb {
color: #333;
font-weight: bold;
}
.pl-md {
background-color: #ffecec;
color: #bd2c00;
}
.pl-mi1 {
background-color: #eaffea;
color: #55a532;
}
.pl-mdr {
color: #795da3;
font-weight: bold;
}
.pl-mo {
color: #1d3e81;
}
kbd {
display: inline-block;
padding: 3px 5px;
font: 11px Consolas, "Liberation Mono", Menlo, Courier, monospace;
line-height: 10px;
color: #555;
vertical-align: middle;
background-color: #fcfcfc;
border: solid 1px #ccc;
border-bottom-color: #bbb;
border-radius: 3px;
box-shadow: inset 0 -1px 0 #bbb;
}
.task-list-item {
list-style-type: none;
}
.task-list-item+.task-list-item {
margin-top: 3px;
}
.task-list-item input {
margin: 0 0.35em 0.25em -1.6em;
vertical-align: middle;
}
:checked+.radio-label {
z-index: 1;
position: relative;
border-color: #4078c0;
}
.sourceLine {
display: inline-block;
}
code .kw { color: #000000; }
code .dt { color: #ed6a43; }
code .dv { color: #009999; }
code .bn { color: #009999; }
code .fl { color: #009999; }
code .ch { color: #009999; }
code .st { color: #183691; }
code .co { color: #969896; }
code .ot { color: #0086b3; }
code .al { color: #a61717; }
code .fu { color: #63a35c; }
code .er { color: #a61717; background-color: #e3d2d2; }
code .wa { color: #000000; }
code .cn { color: #008080; }
code .sc { color: #008080; }
code .vs { color: #183691; }
code .ss { color: #183691; }
code .im { color: #000000; }
code .va {color: #008080; }
code .cf { color: #000000; }
code .op { color: #000000; }
code .bu { color: #000000; }
code .ex { color: #000000; }
code .pp { color: #999999; }
code .at { color: #008080; }
code .do { color: #969896; }
code .an { color: #008080; }
code .cv { color: #008080; }
code .in { color: #008080; }
</style>
<style>
body {
box-sizing: border-box;
min-width: 200px;
max-width: 980px;
margin: 0 auto;
padding: 45px;
padding-top: 0px;
}
</style>
</head>
<body>
<h1 id="article-shares-prediction">Article Shares Prediction</h1>
<p>Shyam Gadhwala & Kamlesh Pandey</p>
<h1 id="library">Library</h1>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(dplyr)</span>
<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(readr)</span>
<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ggplot2)</span>
<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(tidyr)</span>
<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(tidyverse)</span>
<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(caret)</span>
<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(glmnet)</span></code></pre></div>
<h1 id="introdcution">Introdcution</h1>
<p>We are living in a digital world where people are more concerned
about the digital footprint and people often consider the like and
shares they get on a post that they publish online as an important
metric. We have several social media websites and print media to share
our articles. Online print media platform like <a href="www.mashable.com">Mashable</a> publishes thousand of online media
everyday and it is important for them get a more user engagement from
the the article they post online. In this data set we are trying to
predict the shares using that data that would have several potential
influencing factors, in other words, predictors, such as text sentiment
polarity, rate of negative words, rate of positive words, to name
some.</p>
<p>Why this analysis is important ? From this predictive model, Mashable
can potentially predict the number of shares they can receive based on
the type of article they are publishing online.</p>
<h1 id="data">Data</h1>
<p>The data set summarizes a heterogeneous set of features about
articles published by in a period of two years.The data set has 39644
entries and 61 feature columns. The project is aimed to subset the
original data set based on type of data channel (one of the six type)
and then to predict the number of shares.</p>
<p>For this part of the project we are using <strong>TECH</strong> data
channel for training and building a predictive modeling and extending
same models to other five data channels.</p>
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a>newspopData <span class="ot"><-</span> <span class="fu">read_csv</span>(<span class="st">'OnlineNewsPopularity.csv'</span>)</span>
<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a><span class="co"># select specified data channel from params and drop other data channel columns</span></span>
<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a>newspopData <span class="ot"><-</span> newspopData <span class="sc">%>%</span> <span class="fu">filter</span>(newspopData[params<span class="sc">$</span>data_channel] <span class="sc">==</span> <span class="dv">1</span>) <span class="sc">%>%</span></span>
<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a> <span class="fu">select</span>( <span class="sc">-</span><span class="fu">starts_with</span>(<span class="st">'data_channel_is_'</span>), <span class="sc">-</span>url)</span>
<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a>newspopData</span></code></pre></div>
<pre><code>## # A tibble: 7,346 × 54
## timedelta n_tokens…¹ n_tok…² n_uni…³ n_non…⁴
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 731 13 1072 0.416 1.00
## 2 731 10 370 0.560 1.00
## 3 731 12 989 0.434 1.00
## 4 731 11 97 0.670 1.00
## 5 731 8 1207 0.411 1.00
## 6 731 13 1248 0.391 1.00
## 7 731 11 1154 0.427 1.00
## 8 731 8 266 0.573 1.00
## 9 731 8 331 0.563 1.00
## 10 731 12 1225 0.385 1.00
## # … with 7,336 more rows, 49 more variables:
## # n_non_stop_unique_tokens <dbl>,
## # num_hrefs <dbl>, num_self_hrefs <dbl>,
## # num_imgs <dbl>, num_videos <dbl>,
## # average_token_length <dbl>,
## # num_keywords <dbl>, kw_min_min <dbl>,
## # kw_max_min <dbl>, kw_avg_min <dbl>, …</code></pre>
<h1 id="exploratory-data-analysis">Exploratory Data Analysis</h1>
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="fu">summary</span>(newspopData<span class="sc">$</span>shares)</span></code></pre></div>
<pre><code>## Min. 1st Qu. Median Mean 3rd Qu.
## 36 1100 1700 3072 3000
## Max.
## 663600</code></pre>
<p>Dividing the popularity of the shares based on quantiles to classify
them as to how popular they are. The 1st quarter percentile would be
popularity index 4, next quarter be index 3, so on and so forth. Higher
the number of shares of that article, higher the popularity index.</p>
<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a>pShares <span class="ot"><-</span> newspopData<span class="sc">$</span>shares</span>
<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a>pShares <span class="ot"><-</span> <span class="fu">sort</span>(pShares)</span>
<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a>quantileValues <span class="ot"><-</span> <span class="fu">quantile</span>(pShares, <span class="fu">c</span>(.<span class="dv">25</span>, .<span class="dv">5</span>, .<span class="dv">75</span>)) </span>
<span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb6-6"><a href="#cb6-6" aria-hidden="true" tabindex="-1"></a>newspopData <span class="ot"><-</span> newspopData <span class="sc">%>%</span> <span class="fu">mutate</span>(<span class="at">article_popularity_index =</span> <span class="fu">if_else</span>(shares<span class="sc"><</span>quantileValues[<span class="dv">1</span>], <span class="st">"4"</span>,</span>
<span id="cb6-7"><a href="#cb6-7" aria-hidden="true" tabindex="-1"></a> <span class="fu">if_else</span>(shares<span class="sc"><</span>quantileValues[<span class="dv">2</span>], <span class="st">"3"</span>,</span>
<span id="cb6-8"><a href="#cb6-8" aria-hidden="true" tabindex="-1"></a> <span class="fu">if_else</span>(shares<span class="sc"><</span>quantileValues[<span class="dv">3</span>],<span class="st">"2"</span>, <span class="st">"1"</span>))))</span>
<span id="cb6-9"><a href="#cb6-9" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb6-10"><a href="#cb6-10" aria-hidden="true" tabindex="-1"></a>newspopData<span class="sc">$</span>article_popularity_index <span class="ot"><-</span> <span class="fu">as_factor</span>(newspopData<span class="sc">$</span>article_popularity_index)</span></code></pre></div>
<p>Starting EDA with the visualization of the target variable shares as
a function of the most obvious factor, number of words in the
article:</p>
<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a>newspopData<span class="sc">$</span>scaledShare <span class="ot"><-</span> <span class="fu">scale</span>(newspopData<span class="sc">$</span>shares, <span class="at">center =</span> T, <span class="at">scale =</span> T)</span>
<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a><span class="co">#calculating correlation index</span></span>
<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a>corrIndex <span class="ot"><-</span> <span class="fu">round</span>(<span class="fu">cor</span>(newspopData<span class="sc">$</span>scaledShare, newspopData<span class="sc">$</span>n_tokens_content),<span class="dv">2</span>)</span>
<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a><span class="co"># plotting the shares as a function of words in an article</span></span>
<span id="cb7-7"><a href="#cb7-7" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(newspopData, <span class="fu">aes</span>(<span class="at">x=</span> n_tokens_content, <span class="at">y =</span> scaledShare)) <span class="sc">+</span></span>
<span id="cb7-8"><a href="#cb7-8" aria-hidden="true" tabindex="-1"></a> <span class="fu">geom_point</span>()<span class="sc">+</span></span>
<span id="cb7-9"><a href="#cb7-9" aria-hidden="true" tabindex="-1"></a> <span class="fu">labs</span>(<span class="at">subtitle =</span> <span class="st">'Word Count v/s Number of Shares'</span>,</span>
<span id="cb7-10"><a href="#cb7-10" aria-hidden="true" tabindex="-1"></a> <span class="at">y =</span> <span class="st">'Number of Share (Scaled)'</span>,</span>
<span id="cb7-11"><a href="#cb7-11" aria-hidden="true" tabindex="-1"></a> <span class="at">x =</span> <span class="st">'Number of Words in article'</span>, </span>
<span id="cb7-12"><a href="#cb7-12" aria-hidden="true" tabindex="-1"></a> <span class="at">title =</span> <span class="fu">toupper</span>(<span class="fu">str_replace_all</span>(params<span class="sc">$</span>data_channel, <span class="st">"_"</span>, <span class="st">" "</span>)),</span>
<span id="cb7-13"><a href="#cb7-13" aria-hidden="true" tabindex="-1"></a> <span class="at">caption =</span> <span class="st">'Source: News Popularity Dataset'</span>) <span class="sc">+</span> </span>
<span id="cb7-14"><a href="#cb7-14" aria-hidden="true" tabindex="-1"></a> <span class="fu">geom_text</span>(<span class="at">x =</span> <span class="fu">max</span>(newspopData<span class="sc">$</span>n_tokens_content)<span class="sc">/</span><span class="dv">2</span>, </span>
<span id="cb7-15"><a href="#cb7-15" aria-hidden="true" tabindex="-1"></a> <span class="at">y =</span> <span class="fu">max</span>(newspopData<span class="sc">$</span>scaledShare)<span class="sc">/</span><span class="dv">2</span>, <span class="at">size =</span> <span class="dv">4</span>, </span>
<span id="cb7-16"><a href="#cb7-16" aria-hidden="true" tabindex="-1"></a> <span class="at">label =</span> <span class="fu">paste0</span>(<span class="st">"Correlation coefficient = "</span>, corrIndex), <span class="at">color =</span> <span class="st">'red'</span>)</span></code></pre></div>
<p><img src="" /><!-- --></p>
<p>We can inspect trend of Number of shares as a function of Number of
words in the article. If the points show an upward trend, then the
article with high number of words are shared more. However, if we see a
negative trend then we can estimate that with increasing number of words
in the article, number of shares decreases. This trend can be
investigated further with the correlation coefficientm which in this
case is 0.07.</p>
<p>Now, creating a new variable here that help eliminates the dummy
variable for each day of the week. This new variable will take the value
of each day of the week that corresponds to the dummy variable’s
value:</p>
<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a>newspopData <span class="ot"><-</span> newspopData <span class="sc">%>%</span> <span class="fu">select</span>(<span class="sc">-</span>scaledShare)</span>
<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a>newspopData <span class="ot"><-</span> newspopData <span class="sc">%>%</span> <span class="fu">mutate</span>(<span class="at">day =</span> <span class="fu">if_else</span>(weekday_is_monday<span class="sc">==</span> <span class="dv">1</span>, <span class="st">"Monday"</span>, </span>
<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a> <span class="fu">if_else</span>(weekday_is_tuesday<span class="sc">==</span> <span class="dv">1</span>, <span class="st">"Tuesday"</span>,</span>
<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a> <span class="fu">if_else</span>(weekday_is_wednesday<span class="sc">==</span><span class="dv">1</span>, <span class="st">"Wednesday"</span>,</span>
<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a> <span class="fu">if_else</span>(weekday_is_thursday<span class="sc">==</span> <span class="dv">1</span>, <span class="st">"Thursday"</span>,</span>
<span id="cb8-6"><a href="#cb8-6" aria-hidden="true" tabindex="-1"></a> <span class="fu">if_else</span>(weekday_is_friday<span class="sc">==</span> <span class="dv">1</span>, <span class="st">"Friday"</span>,</span>
<span id="cb8-7"><a href="#cb8-7" aria-hidden="true" tabindex="-1"></a> <span class="fu">if_else</span>(weekday_is_saturday<span class="sc">==</span> <span class="dv">1</span>,<span class="st">"Saturday"</span>,</span>
<span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a> <span class="fu">if_else</span>(weekday_is_sunday<span class="sc">==</span> <span class="dv">1</span>, <span class="st">"Sunday"</span>, </span>
<span id="cb8-9"><a href="#cb8-9" aria-hidden="true" tabindex="-1"></a> <span class="st">"-"</span>))))))))</span>
<span id="cb8-10"><a href="#cb8-10" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb8-11"><a href="#cb8-11" aria-hidden="true" tabindex="-1"></a>newspopData<span class="sc">$</span>day <span class="ot"><-</span> <span class="fu">as_factor</span>(newspopData<span class="sc">$</span>day)</span></code></pre></div>
<p>Some statistics based on the variables is as shown:</p>
<div class="sourceCode" id="cb9"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a>knitr<span class="sc">::</span><span class="fu">kable</span>(newspopData <span class="sc">%>%</span> <span class="fu">group_by</span>(day) <span class="sc">%>%</span> <span class="fu">summarize</span>(<span class="at">Count_of_Articles =</span> <span class="fu">n</span>()))</span></code></pre></div>
<table>
<thead>
<tr class="header">
<th align="left">day</th>
<th align="right">Count_of_Articles</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td align="left">Monday</td>
<td align="right">1235</td>
</tr>
<tr class="even">
<td align="left">Tuesday</td>
<td align="right">1474</td>
</tr>
<tr class="odd">
<td align="left">Wednesday</td>
<td align="right">1417</td>
</tr>
<tr class="even">
<td align="left">Thursday</td>
<td align="right">1310</td>
</tr>
<tr class="odd">
<td align="left">Friday</td>
<td align="right">989</td>
</tr>
<tr class="even">
<td align="left">Saturday</td>
<td align="right">525</td>
</tr>
<tr class="odd">
<td align="left">Sunday</td>
<td align="right">396</td>
</tr>
</tbody>
</table>
<div class="sourceCode" id="cb10"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a>knitr<span class="sc">::</span><span class="fu">kable</span>(newspopData <span class="sc">%>%</span> <span class="fu">group_by</span>(day, article_popularity_index) <span class="sc">%>%</span> <span class="fu">summarize</span>(<span class="at">Count_of_Articles =</span> <span class="fu">n</span>()))</span></code></pre></div>
<table>
<thead>
<tr class="header">
<th align="left">day</th>
<th align="left">article_popularity_index</th>
<th align="right">Count_of_Articles</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td align="left">Monday</td>
<td align="left">4</td>
<td align="right">280</td>
</tr>
<tr class="even">
<td align="left">Monday</td>
<td align="left">1</td>
<td align="right">311</td>
</tr>
<tr class="odd">
<td align="left">Monday</td>
<td align="left">2</td>
<td align="right">300</td>
</tr>
<tr class="even">
<td align="left">Monday</td>
<td align="left">3</td>
<td align="right">344</td>
</tr>
<tr class="odd">
<td align="left">Tuesday</td>
<td align="left">4</td>
<td align="right">357</td>
</tr>
<tr class="even">
<td align="left">Tuesday</td>
<td align="left">1</td>
<td align="right">345</td>
</tr>
<tr class="odd">
<td align="left">Tuesday</td>
<td align="left">2</td>
<td align="right">358</td>
</tr>
<tr class="even">
<td align="left">Tuesday</td>
<td align="left">3</td>
<td align="right">414</td>
</tr>
<tr class="odd">
<td align="left">Wednesday</td>
<td align="left">4</td>
<td align="right">368</td>
</tr>
<tr class="even">
<td align="left">Wednesday</td>
<td align="left">1</td>
<td align="right">339</td>
</tr>
<tr class="odd">
<td align="left">Wednesday</td>
<td align="left">2</td>
<td align="right">326</td>
</tr>
<tr class="even">
<td align="left">Wednesday</td>
<td align="left">3</td>
<td align="right">384</td>
</tr>
<tr class="odd">
<td align="left">Thursday</td>
<td align="left">4</td>
<td align="right">329</td>
</tr>
<tr class="even">
<td align="left">Thursday</td>
<td align="left">1</td>
<td align="right">286</td>
</tr>
<tr class="odd">
<td align="left">Thursday</td>
<td align="left">2</td>
<td align="right">339</td>
</tr>
<tr class="even">
<td align="left">Thursday</td>
<td align="left">3</td>
<td align="right">356</td>
</tr>
<tr class="odd">
<td align="left">Friday</td>
<td align="left">4</td>
<td align="right">164</td>
</tr>
<tr class="even">
<td align="left">Friday</td>
<td align="left">1</td>
<td align="right">259</td>
</tr>
<tr class="odd">
<td align="left">Friday</td>
<td align="left">2</td>
<td align="right">272</td>
</tr>
<tr class="even">
<td align="left">Friday</td>
<td align="left">3</td>
<td align="right">294</td>
</tr>
<tr class="odd">
<td align="left">Saturday</td>
<td align="left">4</td>
<td align="right">24</td>
</tr>
<tr class="even">
<td align="left">Saturday</td>
<td align="left">1</td>
<td align="right">189</td>
</tr>
<tr class="odd">
<td align="left">Saturday</td>
<td align="left">2</td>
<td align="right">196</td>
</tr>
<tr class="even">
<td align="left">Saturday</td>
<td align="left">3</td>
<td align="right">116</td>
</tr>
<tr class="odd">
<td align="left">Sunday</td>
<td align="left">4</td>
<td align="right">26</td>
</tr>
<tr class="even">
<td align="left">Sunday</td>
<td align="left">1</td>
<td align="right">158</td>
</tr>
<tr class="odd">
<td align="left">Sunday</td>
<td align="left">2</td>
<td align="right">121</td>
</tr>
<tr class="even">
<td align="left">Sunday</td>
<td align="left">3</td>
<td align="right">91</td>
</tr>
</tbody>
</table>
<p>This table shows the shares of articles on each day of the week. For
tech based articles, we can expect a rise in shares in mid week or
Fridays or after any tech has been launched. For entertainment and
lifestyle articles, post-weekend period would be the most active period
of sharing. While world, social media and business would not have a
definitive trend.</p>
<div class="sourceCode" id="cb11"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(newspopData, <span class="fu">aes</span>(<span class="at">x =</span> day, <span class="at">y =</span> shares<span class="sc">/</span><span class="dv">1000000</span>)) <span class="sc">+</span></span>
<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a> <span class="fu">geom_bar</span>(<span class="at">stat =</span> <span class="st">'identity'</span>, <span class="at">width =</span> <span class="fl">0.5</span>, <span class="at">fill =</span> <span class="st">'tomato3'</span>)<span class="sc">+</span></span>
<span id="cb11-3"><a href="#cb11-3" aria-hidden="true" tabindex="-1"></a> <span class="fu">labs</span>(<span class="at">subtitle =</span> <span class="st">'Number of Shares (Million) Vs Day of Week'</span>,</span>
<span id="cb11-4"><a href="#cb11-4" aria-hidden="true" tabindex="-1"></a> <span class="at">caption =</span> <span class="st">'Source : News Popularity Dataset'</span>,</span>
<span id="cb11-5"><a href="#cb11-5" aria-hidden="true" tabindex="-1"></a> <span class="at">y =</span> <span class="st">'Total Share count in Million'</span>,</span>
<span id="cb11-6"><a href="#cb11-6" aria-hidden="true" tabindex="-1"></a> <span class="at">x =</span> <span class="st">'Day of the Week'</span>,</span>
<span id="cb11-7"><a href="#cb11-7" aria-hidden="true" tabindex="-1"></a> <span class="at">title =</span> <span class="fu">toupper</span>(<span class="fu">str_replace_all</span>(params<span class="sc">$</span>data_channel, <span class="st">"_"</span>, <span class="st">" "</span>)),) <span class="sc">+</span></span>
<span id="cb11-8"><a href="#cb11-8" aria-hidden="true" tabindex="-1"></a> <span class="fu">theme</span>(<span class="at">axis.text.x =</span> <span class="fu">element_text</span>(<span class="at">angle =</span> <span class="dv">65</span>, <span class="at">vjust =</span> <span class="fl">0.6</span>)) <span class="sc">+</span> </span>
<span id="cb11-9"><a href="#cb11-9" aria-hidden="true" tabindex="-1"></a> <span class="fu">theme</span>(<span class="at">plot.caption =</span> <span class="fu">element_text</span>(<span class="at">size=</span><span class="dv">9</span>, <span class="at">color=</span><span class="st">"red"</span>, <span class="at">face=</span><span class="st">"italic"</span>, <span class="at">hjust =</span> <span class="dv">1</span>))</span></code></pre></div>
<p><img src="" /><!-- -->
From this bar chart we can visualize the shares trend across the week.
The users engagement with the type of data Chanel (tech, entertainment,
politics) will be different across the week. Users may be more inclined
toward sharing lifestyle and entertainment news during weekend and
prefer less to share technology/science related news during same
time.</p>
<div class="sourceCode" id="cb12"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(newspopData, <span class="fu">aes</span>(<span class="at">x =</span> global_rate_positive_words, <span class="at">y =</span> global_sentiment_polarity)) <span class="sc">+</span></span>
<span id="cb12-2"><a href="#cb12-2" aria-hidden="true" tabindex="-1"></a> <span class="fu">geom_point</span>(<span class="fu">aes</span>(<span class="at">col =</span> day, <span class="at">shape =</span> article_popularity_index)) <span class="sc">+</span> </span>
<span id="cb12-3"><a href="#cb12-3" aria-hidden="true" tabindex="-1"></a> <span class="fu">geom_smooth</span>(<span class="fu">aes</span>(<span class="at">col =</span> day), <span class="at">method =</span> <span class="st">'lm'</span>, <span class="at">se =</span> F) <span class="sc">+</span> </span>
<span id="cb12-4"><a href="#cb12-4" aria-hidden="true" tabindex="-1"></a> <span class="fu">scale_shape_discrete</span>(<span class="at">name=</span><span class="st">"Article Popularity Index"</span>, <span class="at">labels =</span> <span class="fu">c</span>(<span class="st">"4"</span>, <span class="st">"3"</span>, <span class="st">"2"</span>, <span class="st">"1"</span>))<span class="sc">+</span></span>
<span id="cb12-5"><a href="#cb12-5" aria-hidden="true" tabindex="-1"></a> <span class="fu">labs</span>(<span class="at">subtitle =</span> <span class="st">'Positive Rate VS Sentiment Polarity Plot'</span>,</span>
<span id="cb12-6"><a href="#cb12-6" aria-hidden="true" tabindex="-1"></a> <span class="at">x =</span> <span class="st">'Global Positive Word Rate'</span>,</span>
<span id="cb12-7"><a href="#cb12-7" aria-hidden="true" tabindex="-1"></a> <span class="at">y =</span> <span class="st">'Global Sentiment Polarity'</span>,</span>
<span id="cb12-8"><a href="#cb12-8" aria-hidden="true" tabindex="-1"></a> <span class="at">title =</span> <span class="fu">toupper</span>(<span class="fu">str_replace_all</span>(params<span class="sc">$</span>data_channel, <span class="st">"_"</span>, <span class="st">" "</span>)),</span>
<span id="cb12-9"><a href="#cb12-9" aria-hidden="true" tabindex="-1"></a> <span class="at">caption =</span> <span class="st">"Source : News Popularity Dataset"</span>,</span>
<span id="cb12-10"><a href="#cb12-10" aria-hidden="true" tabindex="-1"></a> <span class="at">color =</span> <span class="st">'Days'</span>,</span>
<span id="cb12-11"><a href="#cb12-11" aria-hidden="true" tabindex="-1"></a> <span class="at">size =</span> <span class="st">'Shares per Million'</span>) <span class="sc">+</span> </span>
<span id="cb12-12"><a href="#cb12-12" aria-hidden="true" tabindex="-1"></a> <span class="fu">theme</span>(<span class="at">plot.caption =</span> <span class="fu">element_text</span>(<span class="at">size=</span><span class="dv">9</span>, <span class="at">color=</span><span class="st">"red"</span>, <span class="at">face=</span><span class="st">"italic"</span>, <span class="at">hjust =</span> <span class="dv">1</span>))</span></code></pre></div>
<p><img src="" /><!-- --></p>
<div class="sourceCode" id="cb13"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(newspopData, <span class="fu">aes</span>(<span class="at">x =</span> global_rate_negative_words, <span class="at">y =</span> global_sentiment_polarity)) <span class="sc">+</span> </span>
<span id="cb13-2"><a href="#cb13-2" aria-hidden="true" tabindex="-1"></a> <span class="fu">geom_point</span>(<span class="fu">aes</span> (<span class="at">col =</span> day, <span class="at">shape =</span> article_popularity_index)) <span class="sc">+</span> </span>
<span id="cb13-3"><a href="#cb13-3" aria-hidden="true" tabindex="-1"></a> <span class="fu">geom_smooth</span>(<span class="fu">aes</span>(<span class="at">col =</span> day), <span class="at">method =</span> <span class="st">'lm'</span>, <span class="at">se =</span> F) <span class="sc">+</span> </span>
<span id="cb13-4"><a href="#cb13-4" aria-hidden="true" tabindex="-1"></a> <span class="fu">scale_shape_discrete</span>(<span class="at">name=</span><span class="st">"Article Popularity Index"</span>, <span class="at">labels =</span> <span class="fu">c</span>(<span class="st">"4"</span>, <span class="st">"3"</span>, <span class="st">"2"</span>, <span class="st">"1"</span>))<span class="sc">+</span></span>
<span id="cb13-5"><a href="#cb13-5" aria-hidden="true" tabindex="-1"></a> <span class="fu">labs</span>(<span class="at">subtitle =</span> <span class="st">'Positive Rate VS Sentiment Polarity Plot'</span>,</span>
<span id="cb13-6"><a href="#cb13-6" aria-hidden="true" tabindex="-1"></a> <span class="at">x =</span> <span class="st">'Global Negative Word Rate'</span>,</span>
<span id="cb13-7"><a href="#cb13-7" aria-hidden="true" tabindex="-1"></a> <span class="at">y =</span> <span class="st">'Global Sentiment Polarity'</span>,</span>
<span id="cb13-8"><a href="#cb13-8" aria-hidden="true" tabindex="-1"></a> <span class="at">title =</span> <span class="fu">toupper</span>(<span class="fu">str_replace_all</span>(params<span class="sc">$</span>data_channel, <span class="st">"_"</span>, <span class="st">" "</span>)),</span>
<span id="cb13-9"><a href="#cb13-9" aria-hidden="true" tabindex="-1"></a> <span class="at">caption =</span> <span class="st">"Source : News Popularity Dataset"</span>,</span>
<span id="cb13-10"><a href="#cb13-10" aria-hidden="true" tabindex="-1"></a> <span class="at">color =</span> <span class="st">'Days'</span>,</span>
<span id="cb13-11"><a href="#cb13-11" aria-hidden="true" tabindex="-1"></a> <span class="at">size =</span> <span class="st">'Shares per Million'</span>) <span class="sc">+</span> </span>
<span id="cb13-12"><a href="#cb13-12" aria-hidden="true" tabindex="-1"></a> <span class="fu">theme</span>(<span class="at">plot.caption =</span> <span class="fu">element_text</span>(<span class="at">size=</span><span class="dv">9</span>, <span class="at">color=</span><span class="st">"red"</span>, <span class="at">face=</span><span class="st">"italic"</span>, <span class="at">hjust =</span> <span class="dv">1</span>)) </span></code></pre></div>
<p><img src="" /><!-- --></p>
<p>The above plots estimate the general sentiments of users based on
positive and negative words in the content. Ideal expectations would be:
an article with more positive words has a positive sentiment index and
more shares, and vice versa. Exceptions may be found in peculiar
cases.</p>
<p>Plotting the number of shares based on the number of images and
videos that an article has, based on what day of the week it is:</p>
<div class="sourceCode" id="cb14"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(newspopData, <span class="fu">aes</span>(<span class="at">x=</span>day, <span class="at">y =</span> shares<span class="sc">/</span><span class="dv">1000000</span>)) <span class="sc">+</span> </span>
<span id="cb14-2"><a href="#cb14-2" aria-hidden="true" tabindex="-1"></a> <span class="fu">geom_bar</span>(<span class="fu">aes</span>(<span class="at">fill =</span> <span class="fu">as_factor</span>(num_imgs)), <span class="at">stat=</span><span class="st">"identity"</span>, <span class="at">position=</span><span class="st">"dodge"</span>) <span class="sc">+</span> </span>
<span id="cb14-3"><a href="#cb14-3" aria-hidden="true" tabindex="-1"></a> <span class="fu">scale_fill_discrete</span>(<span class="at">name =</span> <span class="st">'Number of Images </span><span class="sc">\n</span><span class="st"> in Article'</span>) <span class="sc">+</span></span>
<span id="cb14-4"><a href="#cb14-4" aria-hidden="true" tabindex="-1"></a> <span class="fu">labs</span>(<span class="at">subtitle =</span> <span class="st">'Number of Images in article v/s number of shares'</span>,</span>
<span id="cb14-5"><a href="#cb14-5" aria-hidden="true" tabindex="-1"></a> <span class="at">x =</span> <span class="st">'Number of Images'</span>,</span>
<span id="cb14-6"><a href="#cb14-6" aria-hidden="true" tabindex="-1"></a> <span class="at">y =</span> <span class="st">'Number of shares (in millions)'</span>,</span>
<span id="cb14-7"><a href="#cb14-7" aria-hidden="true" tabindex="-1"></a> <span class="at">title =</span> <span class="fu">toupper</span>(<span class="fu">str_replace_all</span>(params<span class="sc">$</span>data_channel, <span class="st">"_"</span>, <span class="st">" "</span>)),</span>
<span id="cb14-8"><a href="#cb14-8" aria-hidden="true" tabindex="-1"></a> <span class="at">caption =</span> <span class="st">"Source : News Popularity Dataset"</span>) <span class="sc">+</span> </span>
<span id="cb14-9"><a href="#cb14-9" aria-hidden="true" tabindex="-1"></a> <span class="fu">theme</span>(<span class="at">plot.caption =</span> <span class="fu">element_text</span>(<span class="at">size=</span><span class="dv">9</span>, <span class="at">color=</span><span class="st">"red"</span>, <span class="at">face=</span><span class="st">"italic"</span>, <span class="at">hjust =</span> <span class="dv">1</span>))</span></code></pre></div>
<p><img src="" /><!-- --></p>
<p>This plot shows the number of shares (in millions) based on number of
images included in each articles for each day of the week. The general
trend might see a increase in sharing of articles over Fridays and
weekends when there is more leisure time. Moreover, tech based articles
can also see a rise in share if any new technology is released in middle
of the week. Entertainment and Lifestyles articles can see a rise in
share if any events happened over the weekend which is the case most of
the times. World and social media Articles should not have a trend, as
events from all over the world keep on happening throughout the week and
updates are posted on social media non stop. Business articles would be
more trending during working days.</p>
<p>in addition to that, not all articles would be oriented towards
images. For example, tech and business based articles readers would not
care about the number of images included, but only the content itself,
while for entertainment, world, lifestyle articles, images are one of
the major factors in capturing user’s attention, and thus, shares.</p>