-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCameraCalibration.py
50 lines (34 loc) · 1.51 KB
/
CameraCalibration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import pandas as pd
from sklearn.linear_model import LinearRegression
def getCoords():
train_df = pd.read_csv(r"/home/ise.ros/Shyam/Camera Data.csv")
train_df['area2'] = train_df['area']**2
train_df['center_x2'] = train_df['center_x']**2
train_df['center_y2'] = train_df['center_y']**2
train_df['center_x_area'] = train_df['center_x']*train_df['area']
train_df['center_y_area'] = train_df['center_y']*train_df['area']
train_y = train_df[['ros_x', 'ros_y']]
train_x = train_df[['area', 'center_x', 'center_y', 'area2', 'center_x2', 'center_y2', 'center_x_area', 'center_y_area']]
model = LinearRegression()
model.fit(train_x, train_y)
a = 0
cx = 0
cy = 0
with open(r"/home/ise.ros/Shyam/center_x.txt") as f:
cx = int(f.readline())
with open(r"/home/ise.ros/Shyam/center_y.txt") as f:
cy = int(f.readline())
with open(r"/home/ise.ros/Shyam/area.txt") as f:
a = int(f.readline())
print(a)
print(cx)
print(cy)
test_x = pd.DataFrame(list(zip([a], [cx], [cy], [a**2], [cx**2], [cy**2], [cx*a], [cy*a])), columns = ['area', 'center_x', 'center_y', 'area2', 'center_x2', 'center_y2', 'center_x_area', 'center_y_area'])
print(model.predict(test_x))
with open(r"/home/ise.ros/Shyam/current_pos.txt",'r+') as file:
file.truncate(0)
file1 = open(r"/home/ise.ros/Shyam/current_pos.txt", "a")
file1.write(str(model.predict(test_x)))
file1.close()
if __name__ == "__main__":
getCoords()