|
| 1 | +import argparse |
| 2 | +import copy |
| 3 | +import json |
| 4 | +import os |
| 5 | +from pathlib import Path |
| 6 | + |
| 7 | +import torch.distributed.rpc as rpc |
| 8 | +import torch.multiprocessing as mp |
| 9 | +from torch.distributed.rpc import TensorPipeRpcBackendOptions |
| 10 | +from torch.utils.data import DataLoader |
| 11 | + |
| 12 | +from benchmark_class_helper import (get_benchmark_data_map, |
| 13 | + get_benchmark_model_map, |
| 14 | + get_benchmark_ps_map, |
| 15 | + get_benchmark_trainer_map) |
| 16 | +from BenchmarkConfigurations import BenchmarkConfigurations |
| 17 | +from metrics.ProcessedMetricsPrinter import ProcessedMetricsPrinter |
| 18 | + |
| 19 | +USE_CUDA_RPC = "use_cuda_rpc" |
| 20 | + |
| 21 | + |
| 22 | +def get_name(rank, configs): |
| 23 | + t_count = configs.trainer_count |
| 24 | + ps_count = configs.ps_count |
| 25 | + if rank < t_count: |
| 26 | + return f"trainer{rank}" |
| 27 | + elif rank < (t_count + ps_count): |
| 28 | + return f"ps{rank}" |
| 29 | + else: |
| 30 | + return "master" |
| 31 | + |
| 32 | + |
| 33 | +def get_parameter_server_rank(rank, config): |
| 34 | + # rank mod parameter server count to get parameter server number |
| 35 | + # add trainer_count to get parameter server rank |
| 36 | + rank_mod_ps_count = rank % config.ps_count |
| 37 | + return rank_mod_ps_count + config.trainer_count |
| 38 | + |
| 39 | + |
| 40 | +def get_ps_rref(parameter_server_rank, config): |
| 41 | + ps_config = config.ps_config |
| 42 | + ps = get_benchmark_ps_map()[str(ps_config["ps_class"])] |
| 43 | + name = get_name( |
| 44 | + parameter_server_rank, |
| 45 | + config |
| 46 | + ) |
| 47 | + ps_args = ps_config["configurations"].values() |
| 48 | + ps_trainer_count = config.trainer_count / ps_config.ps_count |
| 49 | + rem = config.trainer_count % ps_config.ps_count |
| 50 | + if parameter_server_rank - config.trainer_count < rem: |
| 51 | + ps_trainer_count += 1 |
| 52 | + return rpc.remote( |
| 53 | + name, |
| 54 | + ps, |
| 55 | + args=( |
| 56 | + parameter_server_rank, |
| 57 | + ps_trainer_count, |
| 58 | + *ps_args, |
| 59 | + ), |
| 60 | + ) |
| 61 | + |
| 62 | + |
| 63 | +def run_trainer( |
| 64 | + config, model, data, rank, ps_rref |
| 65 | +): |
| 66 | + trainer_config = config.trainer_config |
| 67 | + trainer_class = get_benchmark_trainer_map()[str(trainer_config["trainer_class"])] |
| 68 | + trainer_args = trainer_config["configurations"].values() |
| 69 | + trainer = trainer_class( |
| 70 | + rank, |
| 71 | + config.trainer_count, |
| 72 | + ps_rref, |
| 73 | + *trainer_args |
| 74 | + ) |
| 75 | + trainer.train(model, data) |
| 76 | + metrics = trainer.get_metrics() |
| 77 | + return [rank, metrics] |
| 78 | + |
| 79 | + |
| 80 | +def call_trainers(config, model, train_data, parameter_server_rrefs): |
| 81 | + futs = [] |
| 82 | + for trainer_rank in range(0, config.trainer_count): |
| 83 | + trainer_name = get_name( |
| 84 | + trainer_rank, |
| 85 | + config |
| 86 | + ) |
| 87 | + ps_rref = None |
| 88 | + if parameter_server_rrefs: |
| 89 | + ps_rank = get_parameter_server_rank(trainer_rank, config) |
| 90 | + ps_rref = parameter_server_rrefs[ps_rank] |
| 91 | + fut = rpc.rpc_async( |
| 92 | + trainer_name, |
| 93 | + run_trainer, |
| 94 | + args=( |
| 95 | + config, |
| 96 | + copy.deepcopy(model), |
| 97 | + train_data[trainer_rank], |
| 98 | + trainer_rank, |
| 99 | + ps_rref, |
| 100 | + ), |
| 101 | + timeout=config.rpc_async_timeout |
| 102 | + ) |
| 103 | + futs.append(fut) |
| 104 | + return futs |
| 105 | + |
| 106 | + |
| 107 | +def benchmark_warmup( |
| 108 | + config, model, data, parameter_server_rrefs |
| 109 | +): |
| 110 | + if config.ps_count > 0: |
| 111 | + ps_config = config.ps_config |
| 112 | + ps = get_benchmark_ps_map()[str(ps_config["ps_class"])] |
| 113 | + futs = call_trainers(config, model, data, parameter_server_rrefs) |
| 114 | + for fut in futs: |
| 115 | + fut.wait() |
| 116 | + for ps_rref in parameter_server_rrefs.values(): |
| 117 | + rpc.rpc_sync( |
| 118 | + ps_rref.owner(), |
| 119 | + ps.reset_state, |
| 120 | + args=(ps_rref,) |
| 121 | + ) |
| 122 | + print("benchmark warmup done\n") |
| 123 | + |
| 124 | + |
| 125 | +def split_list(arr, n): |
| 126 | + return [arr[i::n] for i in range(n)] |
| 127 | + |
| 128 | + |
| 129 | +def run_master(rank, model, data, config, rpc_backend_options): |
| 130 | + world_size = config.trainer_count + config.ps_count + 1 |
| 131 | + rpc.init_rpc( |
| 132 | + get_name( |
| 133 | + rank, |
| 134 | + config |
| 135 | + ), |
| 136 | + rank=rank, |
| 137 | + world_size=world_size, |
| 138 | + rpc_backend_options=rpc_backend_options |
| 139 | + ) |
| 140 | + parameter_server_rrefs = {} |
| 141 | + for i in range( |
| 142 | + config.trainer_count, world_size - 1 |
| 143 | + ): |
| 144 | + parameter_server_rrefs[i] = get_ps_rref(i, config) |
| 145 | + |
| 146 | + train_data = split_list( |
| 147 | + list(DataLoader(data, batch_size=config.batch_size)), |
| 148 | + config.trainer_count |
| 149 | + ) |
| 150 | + |
| 151 | + # warmup run the benchmark |
| 152 | + benchmark_warmup( |
| 153 | + config, model, train_data, parameter_server_rrefs |
| 154 | + ) |
| 155 | + # run the benchmark |
| 156 | + trainer_futs = call_trainers( |
| 157 | + config, model, train_data, parameter_server_rrefs |
| 158 | + ) |
| 159 | + # collect metrics and print |
| 160 | + metrics_printer = ProcessedMetricsPrinter() |
| 161 | + rank_metrics_list = [fut.wait() for fut in trainer_futs] |
| 162 | + metrics_printer.print_metrics("trainer", rank_metrics_list) |
| 163 | + |
| 164 | + |
| 165 | +def run_benchmark(rank, model, data, config): |
| 166 | + |
| 167 | + world_size = config.trainer_count + config.ps_count + 1 |
| 168 | + os.environ['MASTER_ADDR'] = config.master_addr |
| 169 | + os.environ['MASTER_PORT'] = config.master_port |
| 170 | + rpc_backend_options = TensorPipeRpcBackendOptions() |
| 171 | + rpc_backend_options.init_method = config.rpc_init_method |
| 172 | + if rank == world_size - 1: |
| 173 | + # master = [trainer_count + parameter_server_count, trainer_count + parameter_server_count] |
| 174 | + run_master(rank, model, data, config, rpc_backend_options) |
| 175 | + elif rank >= config.trainer_count: |
| 176 | + # parameter_servers = [trainer_count, trainer_count + parameter_server_count) |
| 177 | + rpc.init_rpc( |
| 178 | + get_name( |
| 179 | + rank, |
| 180 | + config |
| 181 | + ), |
| 182 | + rank=rank, |
| 183 | + world_size=world_size, |
| 184 | + rpc_backend_options=rpc_backend_options |
| 185 | + ) |
| 186 | + else: |
| 187 | + # trainers = [0, trainer_count) |
| 188 | + trainer_config = config.trainer_config |
| 189 | + ps_config = config.ps_config |
| 190 | + if (USE_CUDA_RPC in trainer_config and |
| 191 | + trainer_config[USE_CUDA_RPC] and |
| 192 | + USE_CUDA_RPC in ps_config and |
| 193 | + ps_config[USE_CUDA_RPC] and |
| 194 | + config.ps_count > 0): |
| 195 | + ps_rank = get_parameter_server_rank(rank, config) |
| 196 | + ps_name = get_name( |
| 197 | + ps_rank, |
| 198 | + config |
| 199 | + ) |
| 200 | + rpc_backend_options.set_device_map( |
| 201 | + ps_name, |
| 202 | + {rank: ps_rank} |
| 203 | + ) |
| 204 | + trainer_name = get_name( |
| 205 | + rank, |
| 206 | + config |
| 207 | + ) |
| 208 | + rpc.init_rpc( |
| 209 | + trainer_name, |
| 210 | + rank=rank, |
| 211 | + world_size=world_size, |
| 212 | + rpc_backend_options=rpc_backend_options |
| 213 | + ) |
| 214 | + rpc.shutdown() |
| 215 | + |
| 216 | + |
| 217 | +def get_json_config(file_name, id): |
| 218 | + f = open( |
| 219 | + os.path.join( |
| 220 | + Path(__file__).parent, file_name |
| 221 | + ), |
| 222 | + "r" |
| 223 | + ) |
| 224 | + json_config = json.load(f)[id] |
| 225 | + f.close() |
| 226 | + return json_config |
| 227 | + |
| 228 | + |
| 229 | +def load_configurations(args): |
| 230 | + trainer_config_file = args.trainer_config_path |
| 231 | + ps_config_file = args.server_config_path |
| 232 | + benchmark_config = get_json_config(args.benchmark_config_path, args.benchmark) |
| 233 | + benchmark_config["trainer_config"] = get_json_config(trainer_config_file, args.trainer) |
| 234 | + if args.server != "None": |
| 235 | + benchmark_config["ps_config"] = get_json_config(ps_config_file, args.server) |
| 236 | + else: |
| 237 | + benchmark_config["ps_config"] = None |
| 238 | + return BenchmarkConfigurations(**benchmark_config) |
| 239 | + |
| 240 | + |
| 241 | +def get_data(data_class, data_config): |
| 242 | + data_class = get_benchmark_data_map()[data_class] |
| 243 | + return data_class(**data_config) |
| 244 | + |
| 245 | + |
| 246 | +def load_data(args): |
| 247 | + data_config_file = args.data_config_path |
| 248 | + data_config = get_json_config(data_config_file, args.data) |
| 249 | + return get_data(data_config["data_class"], data_config["configurations"]) |
| 250 | + |
| 251 | + |
| 252 | +def get_model(model_class, model_config): |
| 253 | + model_class = get_benchmark_model_map()[model_class] |
| 254 | + return model_class(**model_config) |
| 255 | + |
| 256 | + |
| 257 | +def load_model(args): |
| 258 | + model_config_file = args.model_config_path |
| 259 | + model_config = get_json_config(model_config_file, args.model) |
| 260 | + return get_model(model_config["model_class"], model_config["configurations"]) |
| 261 | + |
| 262 | + |
| 263 | +def main(): |
| 264 | + parser = argparse.ArgumentParser(description="RPC PS Benchmark") |
| 265 | + |
| 266 | + parser.add_argument( |
| 267 | + "--benchmark_config_path", |
| 268 | + type=str, |
| 269 | + default="configurations/benchmark_configurations.json", |
| 270 | + help="path to benchmark configuration file" |
| 271 | + ) |
| 272 | + parser.add_argument( |
| 273 | + "--data_config_path", |
| 274 | + type=str, |
| 275 | + default="configurations/data_configurations.json", |
| 276 | + help="path to data configuration file" |
| 277 | + ) |
| 278 | + parser.add_argument( |
| 279 | + "--model_config_path", |
| 280 | + type=str, |
| 281 | + default="configurations/model_configurations.json", |
| 282 | + help="path to model configuration file" |
| 283 | + ) |
| 284 | + parser.add_argument( |
| 285 | + "--server_config_path", |
| 286 | + type=str, |
| 287 | + default="configurations/server_configurations.json", |
| 288 | + help="path to server configuration file" |
| 289 | + ) |
| 290 | + parser.add_argument( |
| 291 | + "--trainer_config_path", |
| 292 | + type=str, |
| 293 | + default="configurations/trainer_configurations.json", |
| 294 | + help="path to trainer configuration file" |
| 295 | + ) |
| 296 | + parser.add_argument( |
| 297 | + "--benchmark", |
| 298 | + type=str, |
| 299 | + help="id for benchmark configuration" |
| 300 | + ) |
| 301 | + parser.add_argument( |
| 302 | + "--data", |
| 303 | + type=str, |
| 304 | + help="id for data configuration" |
| 305 | + ) |
| 306 | + parser.add_argument( |
| 307 | + "--model", |
| 308 | + type=str, |
| 309 | + help="id for model configuration" |
| 310 | + ) |
| 311 | + parser.add_argument( |
| 312 | + "--server", |
| 313 | + type=str, |
| 314 | + help="id for parameter server configuration" |
| 315 | + ) |
| 316 | + parser.add_argument( |
| 317 | + "--trainer", |
| 318 | + type=str, |
| 319 | + help="id for trainer configuration" |
| 320 | + ) |
| 321 | + args = parser.parse_args() |
| 322 | + print(f"{args}\n") |
| 323 | + |
| 324 | + config = load_configurations(args) |
| 325 | + data = load_data(args) |
| 326 | + model = load_model(args) |
| 327 | + |
| 328 | + world_size = config.trainer_count + config.ps_count + 1 |
| 329 | + |
| 330 | + mp.spawn( |
| 331 | + run_benchmark, |
| 332 | + args=( |
| 333 | + model, |
| 334 | + data, |
| 335 | + config, |
| 336 | + ), |
| 337 | + nprocs=world_size, |
| 338 | + join=True |
| 339 | + ) |
| 340 | + |
| 341 | + |
| 342 | +if __name__ == "__main__": |
| 343 | + main() |
0 commit comments