-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path53 Hough Transformation.py
46 lines (37 loc) · 1.24 KB
/
53 Hough Transformation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
"""
@author: Osama Shakeel
---Hough Transform---
Hough Transform is a popular technique to detect any shape,
if you can represent that shape in mathematical form.
It can detect the shape even if it is broken or distorted a
little bit.
functions: cv2.HoughLines(), cv2.HoughLinesP()
We represent shapes with the help of lines.
And line are expressed for Hough Transform by --
Cartesian CS(cordinate system) --> y= mx+c and Polar CS --> xcos0+ysin0
"""
import cv2
import numpy as np
img = cv2.imread('D:\\music\\chess.jpg')
img = cv2.resize(img,(400,400))
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray,10,200,apertureSize = 3)
#function accept parameter(img,rho,theta)
lines = cv2.HoughLines(edges,1,np.pi/180,200)
#rho value -- distance resolution of pixels
#thetha - angle resolution
#line threshold
for rho,theta in lines[0]:
a = np.cos(theta)
b = np.sin(theta)
x0 = a*rho
y0 = b*rho
x1 = int(x0 + 1000*(-b))
y1 = int(y0 + 1000*(a))
x2 = int(x0 - 1000*(-b))
y2 = int(y0 - 1000*(a))
cv2.line(img,(x1,y1),(x2,y2),(255,0,255),2)
cv2.imshow("edge",edges)
cv2.imshow("lines",img)
cv2.waitKey(0)
cv2.destroyAllWindows()