-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
41 lines (34 loc) · 1.67 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import torch
import torch.nn as nn
import torch.nn.functional as F
from data import Data
class Encoder1(nn.Module):
def __init__(self, embed_dim, vocab_len, output_len, lstm_layers) :
super(Encoder1, self).__init__()
self.output_len = output_len
self.embedding = nn.Embedding(vocab_len, embed_dim)
self.lstm = nn.LSTM(embed_dim, output_len, lstm_layers, bidirectional=True)
def forward(self, x) :
embeddings = self.embedding(x)
embeddings = embeddings.transpose(0, 1)
out, hidden = self.lstm(embeddings)
return out, hidden
class Decoder1(nn.Module):
def __init__(self, embed_dim, vocab_len, output_len, lstm_layers) :
super(Decoder1, self).__init__()
self.embedding = nn.Embedding(vocab_len, embed_dim)
self.lstm = nn.LSTM(embed_dim, output_len, lstm_layers, bidirectional=True)
self.final_layer = nn.Linear(2*output_len, vocab_len)
def forward(self, x, hidden) :
embeddings = self.embedding(x)
embeddings = embeddings.unsqueeze(0).unsqueeze(0) if len(embeddings.size()) == 1 else embeddings
out, hidden = self.lstm(embeddings, hidden)
output = F.softmax(self.final_layer(out.squeeze(0)), dim = 1)
return output, hidden
def load_pretrained(encoder, decoder, embed_dim):
print('Loading Pretrained Embeddings')
temp = torch.zeros(len(Data.language.embeddings)+3, embed_dim)
for i in range(len(Data.language.embeddings)) :
temp[i] = torch.tensor(Data.language.embeddings[i])
encoder.embedding.weight.data = torch.Tensor(temp).to(torch.device('cuda'))
decoder.embedding.weight.data = torch.Tensor(temp).to(torch.device('cuda'))