-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalysis.py
36 lines (32 loc) · 1.6 KB
/
analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import matplotlib.pyplot as plt
f = open('logs.txt', 'r')
li = [items for items in f.readlines()]
training = [li[items].strip('\n') for items in range(1, len(li), 4)]
validation = [li[items].strip('\n') for items in range(2, len(li), 4)]
training_losses = []
training_accuracy = []
validation_losses = []
validation_accuracy = []
for items in range(len(training)) :
li = training[items].split(',')
training_losses.append(float(li[1].strip(' Training Loss: ')))
training_accuracy.append(float(li[2].strip(' Training Accuracy: ')))
li = validation[items].split(',')
validation_losses.append(float(li[1].strip(' Validation Loss: ')))
validation_accuracy.append(float(li[2].strip(' Validation Accuracy: ')))
fig, ax = plt.subplots(2, 1, figsize = (10, 11))
ax[0].plot([items for items in range(len(training))], training_losses, color='b', label='Training')
ax[0].plot([items for items in range(len(training))], validation_losses, color='r', label='Validation')
ax[0].set_title('Losses vs Epochs')
ax[0].legend(loc="upper right")
ax[0].set_xticks([items for items in range(len(training))])
ax[0].set_xticklabels([items for items in range(len(training))], fontsize=8)
ax[0].grid()
ax[1].plot([items for items in range(len(training))], training_accuracy, color='b', label='Training')
ax[1].plot([items for items in range(len(training))], validation_accuracy, color='r', label='Validation')
ax[1].set_title("Accuracy vs Epochs")
ax[1].legend(loc="lower right")
ax[1].set_xticks([items for items in range(len(training))])
ax[1].set_xticklabels([items for items in range(len(training))], fontsize=8)
ax[1].grid()
plt.show()