Skip to content

Latest commit

 

History

History
26 lines (20 loc) · 723 Bytes

File metadata and controls

26 lines (20 loc) · 723 Bytes

Sentence_embed_autoencoder-pytorch

Creating the sentence embedding using the auto-encoders in pytorch

The dataset used here are hotel reviews obtained online. The autoencoder here as bi-LSTMs as the encoder and decoder with no dropout. The word embeddings are generated using gensim's word2vec.

The accuracy metric is BLEU score using the smoothing function from nltk.


Package Requirements

  • Python 3.6.4
  • pytorch 1.2.0+cu92
  • matplotlib 3.1.2
  • pandas 0.22.0
  • re 2.2.1
  • gensim 3.8.1
  • numpy 1.17.0
  • sklearn 0.19.1
  • nltk 3.2.5

How To Run

python run.py