-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy path20170930Rforbeginners.R
192 lines (156 loc) · 4.91 KB
/
20170930Rforbeginners.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# Sunum 10, "Ortalama" Uygulama
x <- rnorm(n = 20,
mean = 10,
sd = 1) # Aykiri degerler az, Stdev dusuk.
plot(x)
mean(x)
abline(a = mean(x),b = 0,col = "red")
legend("topright",
legend =c("Mean"),
lty=c(1),
lwd=c(2.5),
col=c("red"))
# Sunum 13, "Median" Uygulama
x1 <- rnorm(n = 20,
mean = 10,
sd = 1) # Aykiri degerler fazla, Stdev buyuk.
x2 <- rnorm(n = 20,
mean = 20,
sd = 10) # Aykiri degerler fazla, Stdev buyuk.
x <-c(x1,x2)
plot(x)
median(x)
mean(x)
abline(a = mean(x),b = 0,col = "red")
abline(a = median(x),b = 0,col = "blue")
legend("topright",
legend =c("Mean","Median"),
lty=c(1,1),
lwd=c(2.5,2.5),
col=c("red","blue"))
# Sunum 15, "Mod" Uygulama
# Gozlemlerin mod degerini bulmak icin R'da Built-in paket fonksiyonu bulunmamaktadir.
# "modeest" paketinden yararlanilabilir. Ref: https://www.rdocumentation.org/packages/modeest/versions/2.1/topics/mlv
require("modeest")
x <- c(19, 4, 5, 7, 29, 19, 29, 13, 25, 19)
mlv(x , method = "mfv")
ModeModel <- mlv(x , method = "mfv") # mfv: most frequent value(s)
ModeX <- ModeModel$M
ModeX
plot(x)
abline(a = ModeX,b = 0,col="red")
legend("topleft",
legend =c("Mod"),
lty=c(1),
lwd=c(2.5),
col=c("red"))
# Sunum 20, Geometrik Ortalama - Aritmetik Ortalama Karsilastirma
# Degisim Orani (hizi)=1+r=Sonraki deger/Onceki deger
DegisimOrani <- function(x){
ValueLength <- length(x)
ChangeRate <- rep(0,ValueLength-1)
for(i in 2:ValueLength){
ChangeRate[i-1] <- x[i] / x[i-1]
}
return(ChangeRate)
}
AritmetikOrt <- function(x){
return( round(mean(x),2) )
}
GeometrikOrt <- function(x){
return( round(sqrt(prod(x)),2) )
}
# Ornek,
Oranlar <- DegisimOrani(c(15000,30000,120000))
GeometrikBuyumeHizi <-GeometrikOrt(Oranlar)
AritmetikBuyumeHizi <-AritmetikOrt(Oranlar)
print(Oranlar)
print(GeometrikBuyumeHizi)
print(AritmetikBuyumeHizi)
# Geometrik
GeometrikTahmin_2010 <- GeometrikBuyumeHizi * 15000
GeometrikTahmin_2011 <- GeometrikBuyumeHizi * GeometrikTahmin_2010
print(GeometrikTahmin_2010)
print(GeometrikTahmin_2011)
# Aritmetik
AritmetikTahmin_2010 <- AritmetikBuyumeHizi * 15000
AritmetikTahmin_2011 <- AritmetikBuyumeHizi * AritmetikTahmin_2010
print(AritmetikTahmin_2010)
print(AritmetikTahmin_2011)
# Sunum 24, Harmonik Ortalama
HarmonikOrt <- function(x){
return(1/mean(1/x)) # Harmonik Ortalama
}
EtFiyatlari <- c(20,25,28,32)
Harmonik <- HarmonikOrt(EtFiyatlari)
Aritmetik <- mean(EtFiyatlari)
plot(EtFiyatlari,type = "o")
abline(a = Harmonik,b = 0,col ="red" )
abline(a = Aritmetik,b = 0,col ="blue" )
legend("topleft",
legend =c("Harmonik","Aritmetik"),
lty=c(1,1),
lwd=c(2.5,2.5),
col=c("red","blue"))
# Sunum 30, Kartil, Desil ve Santiller
# Kartiller,
scores <- c(88, 84, 83, 80, 94, 90, 81, 79, 79, 81, 85, 87, 86, 89, 92)
quantile(scores)
# Desiller,
weights <- c(69, 70, 75, 66, 83, 88, 66, 63, 61, 68, 73, 57, 52, 58, 77)
quantile(weights, prob = seq(0, 1, length = 11), type = 5)
# Santil,
heights <- c(24, 44, 14, 45, 36, 48, 77, 85, 56, 15, 34, 70, 51, 75, 83)
quantile(heights, prob = 0.30) # 30. Santil
# Sunum 46, 3 ve 4. Momentler (Asimetri Olculeri)
Moment.mean <- function(x) {
# compute the observed moments of x around the mean
n <- length(x)
mean <- sum(x)/n
M <- c()
M[1] <- sum((x - mean)^1)/n
M[2] <- sum((x - mean)^2)/n
M[3] <- sum((x - mean)^3)/n
M[4] <- sum((x - mean)^4)/n
return(M)
}
Skewness <- function(x) {
# compute skewness
Skew <- Moment.mean(x)[3]/(Moment.mean(x)[2])^(3/2)
return(Skew)
}
Kurtosis <- function(x) {
Kurt <- (Moment.mean(x)[4]/(Moment.mean(x)[2]^2))
return(Kurt)
}
set.seed(123) # Generate Random seed 123
x <- rnorm(1000,mean = 0,sd = 1)
NormalSkew <- Skewness(x)
NormalKurt <- Kurtosis(x)
print(NormalSkew) # NormalSkew ~= 0 ise seri simetrik
print(NormalKurt) # NormalKurt ~= 3 ise seri normal
hist(x)
# Sunum 57, Histogramlar
str(airquality)
Temperature <- airquality$Temp
hist(Temperature)
hist(Temperature,breaks = 100) # breaks parametresi
hist(Temperature,
main="Maximum daily temperature at La Guardia Airport",
xlab="Temperature in degrees Fahrenheit",
xlim=c(50,100),
col="darkmagenta",
freq=FALSE
)
# Sunum 64, Box-Plot
boxplot(mpg~cyl,
data=mtcars,
main="Car Milage Data",
xlab="Number of Cylinders",
ylab="Miles Per Gallon")
boxplot(wt~cyl,
data=mtcars,
main=toupper("Vehicle Weight"),
xlab="Number of Cylinders",
ylab="Weight",
col="darkmagenta")