-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathupdate_data.py
158 lines (139 loc) · 4.15 KB
/
update_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import requests
import pandas as pd
from datetime import datetime
import os
import numpy as np
states = {'an':'Andaman and Nicobar Islands',
'ap':'Andhra Pradesh',
'ar':'Arunachal Pradesh',
'as':'Assam',
'br':'Bihar',
'ch':'Chandigarh',
'ct':'Chhattisgarh',
'dd':'Daman and Diu',
'dl':'Delhi',
'dn':'Dadra and Nagar Haveli and Daman and Diu',
'ga':'Goa',
'gj':'Gujarat',
'hp':'Himachal Pradesh',
'hr':'Haryana',
'jh':'Jharkhand',
'jk':'Jammu and Kashmir',
'ka':'Karnataka',
'kl':'Kerala',
'la':'Ladakh',
'ld':'Lakshadweep',
'mh':'Maharashtra',
'ml':'Meghalaya',
'mn':'Manipur',
'mp':'Madhya Pradesh',
'mz':'Mizoram',
'nl':'Nagaland',
'or':'Odisha',
'pb':'Punjab',
'py':'Puducherry',
'rj':'Rajasthan',
'sk':'Sikkim',
'tg':'Telangana',
'tn':'Tamil Nadu',
'tr':'Tripura',
'tt':'Total',
'un':'State Unassigned',
'up':'Uttar Pradesh',
'ut':'Uttarakhand',
'wb':'West Bengal'
}
# State Level Daily
resp = requests.get("https://api.covid19india.org/states_daily.json")
if (resp.status_code == 200):
resp = resp.json()
df = pd.DataFrame(resp['states_daily'])
df['date'] = pd.to_datetime(df['date'])
df = df.sort_values(by=['date','status'])
DATA_URL = (
"D:/Covid-Data-Visualization/state_level_daily.csv"
)
data = pd.read_csv(DATA_URL)
data['Date'] = pd.to_datetime(data['Date'])
data = data.sort_values(by=['Date'])
data = data.iloc[-1:]
dt = data['Date'].values[0]
df = df[df['date']>dt]
df = df.rename(columns=states)
df = df.set_index(['date','status'])
df = df.T
new_json = []
if not (df.empty):
for (item,row) in df.iterrows():
date_list = row.index.get_level_values(0).unique().sort_values()
for d in date_list:
date = datetime.strftime(d,'%d-%b-%y')
if (item == 'dateymd'):
continue
new_obj = {
'Date' : date,
'Confirmed' : row[date]['Confirmed'],
'Deceased' :row[date]['Deceased'],
'Recovered': row[date]['Recovered'],
'State_Name': item
}
new_json.append(new_obj)
df = pd.DataFrame(new_json)
df = df.sort_values(by=['Date','State_Name'])
df.to_csv(DATA_URL, mode='a', header=False, index=False)
print ('State Level Data: Successful')
else:
print ('State Level Data: Nothing to add')
else:
print ('State Level Data: HTTP ERROR')
# District Level data
resp = requests.get("https://api.covid19india.org/state_district_wise.json")
if (resp.status_code == 200):
resp = resp.json()
DATA_URL = (
"D:/Covid-Data-Visualization/district_level.csv"
)
new_json=[]
for i in resp.keys():
districtData = resp[i]['districtData']
for j in districtData:
new_obj = {
'State_Name': i,
'District_Name':j,
'Active': districtData[j]['active'],
'Confirmed': districtData[j]['confirmed'],
'Deceased': districtData[j]['deceased'],
'Recovered': districtData[j]['recovered']
}
new_json.append(new_obj)
df = pd.DataFrame(new_json)
df.to_csv(DATA_URL, index=False)
print ('District Level Data: Successful')
else:
print ('District Level Data: HTTP ERROR')
# Test Data
DATA_URL = (
"D:/Covid-Data-Visualization/state_level_tested_daily.csv"
)
resp = requests.get("https://api.covid19india.org/state_test_data.json")
new_json = []
if resp.status_code==200:
resp = resp.json()
df = pd.DataFrame(resp['states_tested_data'])
df = df[['updatedon','totaltested','state']]
for (item,row) in df.iterrows():
date = datetime.strptime(row['updatedon'],'%d/%m/%Y')
date_string = datetime.strftime(date,'%d-%b-%Y')
new_obj = {
'Date' : date_string,
'Tested' : row['totaltested'],
'State_Name' : row['state']
}
new_json.append(new_obj)
df = pd.DataFrame(new_json)
df = df.replace(r'^\s*$', np.nan, regex=True)
df.fillna(0, inplace=True)
df.to_csv(DATA_URL,index=False)
print ('Test Data: Successful')
else:
print ('Test Data: HTTP ERROR')