-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgan_models.py
141 lines (109 loc) · 3.96 KB
/
gan_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import torch
import torch.nn as nn
from torch.nn.utils import spectral_norm
import numpy as np
import config_gan as c
device = torch.device("cuda:0" if (torch.cuda.is_available() and ngpu > 0) else "cpu")
#----------------------------------------------------------------------
# Generators
#----------------------------------------------------------------------
class netG(nn.Module):
def __init__(self, in_dim=2, internal_size=16, num_layers=1, init_zeros=False):
super(netG, self).__init__()
self.in_dim = in_dim
self.internal_size = internal_size
self.num_layers = num_layers
self.device = device
self.params_trainable = list(filter(lambda p: p.requires_grad, self.parameters()))
def define_model_architecture(self):
model = nn.ModuleList()
model.append(nn.Linear(c.latent_dim_gen * self.in_dim, self.internal_size))
#model.append(nn.ReLU())
model.append(nn.LeakyReLU(0.1))
for layer in range(self.num_layers):
model.append(nn.Linear(self.internal_size, self.internal_size))
#model.append(nn.ReLU())
model.append(nn.LeakyReLU(0.1))
model.append(nn.Linear(self.internal_size, self.in_dim))
self.model = model.double().to(device)
self.params_trainable = list(filter(lambda p: p.requires_grad, self.model.parameters()))
def forward(self, x):
for l in self.model:
x = l(x)
return x
def set_optimizer(self):
'''Set optimizer for training'''
self.optim = torch.optim.Adam(
self.params_trainable,
lr=c.lr,
betas=c.betas,
eps=1e-6,
weight_decay=c.weight_decay
)
self.scheduler = torch.optim.lr_scheduler.StepLR(
optimizer=self.optim,
step_size=1,
gamma = c.gamma
)
def save(self, name):
torch.save({'opt': self.optim.state_dict(),
'net': self.state_dict()}, name)
#----------------------------------------------------------------------
# Discriminators
#----------------------------------------------------------------------
class netD(nn.Module):
def __init__(self, in_dim=2, internal_size=16, num_layers=1, init_zeros=False):
super(netD, self).__init__()
self.in_dim = in_dim
self.internal_size = internal_size
self.num_layers = num_layers
self.device = device
self.params_trainable = list(filter(lambda p: p.requires_grad, self.parameters()))
def define_model_architecture(self):
'''define model with spectral normalization regulariazation'''
model = nn.ModuleList()
model.append(spectral_norm(nn.Linear(self.in_dim, self.internal_size), n_power_iterations=2))
#model.append(nn.ReLU())
model.append(nn.LeakyReLU(0.1))
for layer in range(self.num_layers):
model.append(spectral_norm(nn.Linear(self.internal_size, self.internal_size), n_power_iterations=2))
#model.append(nn.ReLU())
model.append(nn.LeakyReLU(0.1))
model.append(spectral_norm(nn.Linear(self.internal_size, 1), n_power_iterations=2))
self.model = model.double().to(device)
self.params_trainable = list(filter(lambda p: p.requires_grad, self.model.parameters()))
def define_model_architecture_unreg(self):
model = nn.ModuleList()
model.append(nn.Linear(self.in_dim, self.internal_size))
#model.append(nn.ReLU())
model.append(nn.LeakyReLU(0.1))
for layer in range(self.num_layers):
model.append(nn.Linear(self.internal_size, self.internal_size))
#model.append(nn.ReLU())
model.append(nn.LeakyReLU(0.1))
model.append(nn.Linear(self.internal_size, 1))
self.model = model.double().to(device)
self.params_trainable = list(filter(lambda p: p.requires_grad, self.model.parameters()))
def forward(self, x):
for l in self.model:
x = l(x)
return x
def set_optimizer(self):
'''Set optimizer for training'''
self.optim = torch.optim.Adam(
self.params_trainable,
lr=c.lr,
betas=c.betas,
eps=1e-6,
weight_decay=c.weight_decay
)
self.scheduler = torch.optim.lr_scheduler.StepLR(
optimizer=self.optim,
step_size=1,
gamma = c.gamma
)
def save(self, name):
torch.save({'opt': self.optim.state_dict(),
'net': self.state_dict()},
#'epoch': self.init_epoch},
name)