-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathunittests.py
63 lines (51 loc) · 2.96 KB
/
unittests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
"""
"""
import tensorflow as tf
import numpy as np
# from synthtext import generator
from icdar import generator
from config import CHAR_VECTOR
from model_backbone import Backbone
from model_detection import Detection
from model_roirotate import RoIRotate, tfa_enabled
from model_recognition import Recognition
# init
input_shape = [640, 640, 3] # 160 / 480 / 640 / 800
model_sharedconv = Backbone(backbone='mobilenet', input_shape=input_shape)
model_detection = Detection()
model_RoIrotate = RoIRotate(tfa_enabled=tfa_enabled)
model_recognition = Recognition(num_classes=len(CHAR_VECTOR)+1, training=True, drop_prob=0.05)
# -------- #
data_gen = generator(input_size=input_shape[0],
batch_size=1,
min_text_size=8,
random_scale=np.array([1.0])
)
x_batch = data_gen.__next__()
for loss_id in range(4):
with tf.GradientTape() as tape:
# forward-prop
sharedconv = model_sharedconv(x_batch['images'].copy())
f_score_, geo_score_ = model_detection(sharedconv)
features, ws = model_RoIrotate(sharedconv, x_batch['rboxes'], expand_px=1)
logits = model_recognition(features)
# loss
loss_cls = model_detection.loss_classification2(x_batch['score_maps'], f_score_, x_batch['training_masks'])
loss_iou, loss_angle = model_detection.loss_regression(x_batch['geo_maps'], geo_score_, x_batch['score_maps'], x_batch['training_masks'])
loss_recongition = model_recognition.loss_recognition(y=x_batch['text_labels_sparse'], logits=logits, ws=ws)
if loss_id == 0:
grads = tape.gradient(loss_cls, model_sharedconv.trainable_variables + model_detection.trainable_variables + model_recognition.trainable_variables)
grad_stats = [i.numpy().sum() if i is not None else i for i in grads]
print(sum([i is not None for i in grad_stats]), grad_stats)
if loss_id == 1:
grads = tape.gradient(loss_iou, model_sharedconv.trainable_variables + model_detection.trainable_variables + model_recognition.trainable_variables)
grad_stats = [i.numpy().sum() if i is not None else i for i in grads]
print(sum([i is not None for i in grad_stats]), grad_stats)
if loss_id == 2:
grads = tape.gradient(loss_angle, model_sharedconv.trainable_variables + model_detection.trainable_variables + model_recognition.trainable_variables)
grad_stats = [i.numpy().sum() if i is not None else i for i in grads]
print(sum([i is not None for i in grad_stats]), grad_stats)
if loss_id == 3:
grads = tape.gradient(loss_recongition, model_sharedconv.trainable_variables + model_detection.trainable_variables + model_recognition.trainable_variables)
grad_stats = [i.numpy().sum() if i is not None else i for i in grads]
print(sum([i is not None for i in grad_stats]), grad_stats)