forked from VertaAI/modeldb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLinearModel.py
202 lines (164 loc) · 6.98 KB
/
LinearModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
"""
Sample workflow using scikit-learn linear_model.
"""
import os
import unittest
import argparse
import numpy as np
import statsmodels.api as sm
from sklearn import linear_model
from sklearn import preprocessing
from sklearn.metrics import mean_squared_error
from modeldb.sklearn_native.ModelDbSyncer import *
from modeldb.sklearn_native import SyncableMetrics
ROOT_DIR = '../../../../server/'
def load_pandas_dataset():
"""
Helper function to import data.
"""
# load dataset
df = sm.datasets.fair.load_pandas().data
target = pd.DataFrame(df['affairs'])
df = df.drop('affairs', 1)
target = np.ravel(target)
return df, target
def run_linear_model_workflow():
"""
Sample workflow using OneHotEncoder and LinearRegression.
"""
syncer_obj = Syncer.create_syncer("test1", "test_user",
"pandas-linear-regression")
data, target = load_pandas_dataset()
syncer_obj.add_tag(data, "occupation dataset")
# Hot encode occupation column of data
hot_enc = preprocessing.OneHotEncoder()
syncer_obj.add_tag(hot_enc, "Hot encoding occupation column")
hot_enc.fit_sync(data['occupation'].reshape(-1, 1))
hot_enc_rows = hot_enc.transform_sync(data['occupation'].reshape(-1, 1))
hot_enc_df = pd.DataFrame(hot_enc_rows.toarray())
# Drop column as it is now encoded
dropped_data = data.drop_sync('occupation', axis=1)
# Join the hot encoded rows with the rest of the data
data = dropped_data.join(hot_enc_df)
x_train, x_test, y_train, y_test = cross_validation.train_test_split_sync(
data, target, test_size=0.3, random_state=1)
syncer_obj.add_tag(x_train, "training data - 70%")
syncer_obj.add_tag(x_test, "testing data - 30%")
model = linear_model.LinearRegression()
syncer_obj.add_tag(model, "Basic linear reg")
model.fit_sync(x_train, y_train)
y_pred = model.predict_sync(x_test)
mean_error = SyncableMetrics.compute_metrics(
model, mean_squared_error, y_test, y_pred, x_test, "", 'affairs')
# Sync all the events to database
syncer_obj.sync()
# Certain variables are returned so they can be used for unittests below.
return syncer_obj, x_test, mean_error, dropped_data
class TestLinearModelEndToEnd(unittest.TestCase):
"""
Tests if workflow above is stored in database correctly.
"""
@classmethod
def setUpClass(self):
"""
This executes at the beginning of unittest.
Database is cleared before testing.
"""
os.system("cat " + ROOT_DIR + "codegen/sqlite/clearDb.sql "
"| sqlite3 " + ROOT_DIR + "modeldb_test.db")
self.syncer_obj, self.x_test, self.mean_error, self.dropped_data = run_linear_model_workflow()
def test_project(self):
"""
Tests if project is stored correctly.
"""
projectOverview = self.syncer_obj.client.getProjectOverviews()[0]
project = projectOverview.project
self.assertEqual(project.description, 'pandas-linear-regression')
self.assertEqual(project.author, 'srinidhi')
self.assertEqual(project.name, 'test1')
self.assertGreaterEqual(project.id, 0)
self.assertGreaterEqual(projectOverview.numExperimentRuns, 0)
self.assertGreaterEqual(projectOverview.numExperiments, 0)
def test_models(self):
"""
Tests if the two models are stored correctly.
"""
projectOverview = self.syncer_obj.client.getProjectOverviews()[0]
project = projectOverview.project
runs_and_exps = self.syncer_obj.client.getRunsAndExperimentsInProject(
project.id)
# Get the latest experiment run id
exp_id = runs_and_exps.experimentRuns[-1].id
model_responses = self.syncer_obj.client.getExperimentRunDetails(
exp_id).modelResponses
# Two models are stored above - ensure both are in database
self.assertEqual(len(model_responses), 2)
model1 = model_responses[0]
model2 = model_responses[1]
self.assertEqual(model1.projectId, project.id)
self.assertEqual(model2.projectId, project.id)
transformer1 = model1.specification
transformer2 = model2.specification
self.assertEqual(transformer1.transformerType, 'OneHotEncoder')
self.assertEqual(transformer2.transformerType, 'LinearRegression')
self.assertEqual(transformer1.tag, 'Hot encoding occupation column')
self.assertEqual(transformer2.tag, 'Basic linear reg')
# Check hyperparameters for both models
hyperparams1 = transformer1.hyperparameters
hyperparams2 = transformer2.hyperparameters
self.assertEqual(len(hyperparams1), 5)
self.assertEqual(len(hyperparams2), 4)
def test_metrics(self):
"""
Tests if metrics are stored correctly.
"""
projectOverview = self.syncer_obj.client.getProjectOverviews()[0]
project = projectOverview.project
runs_and_exps = self.syncer_obj.client.getRunsAndExperimentsInProject(
project.id)
# Get the latest experiment run id
exp_id = runs_and_exps.experimentRuns[-1].id
model_responses = self.syncer_obj.client.getExperimentRunDetails(
exp_id).modelResponses
model1 = model_responses[0]
model2 = model_responses[1]
# Metrics are only stored for the second model.
self.assertEqual(len(model1.metrics), 0)
self.assertEqual(len(model2.metrics), 1)
self.assertIn('mean_squared_error', model2.metrics)
dataframe_id = self.syncer_obj.get_modeldb_id_for_object(self.x_test)
self.assertAlmostEqual(
self.mean_error,
model2.metrics['mean_squared_error'][dataframe_id], places=4)
def test_dataframe_ancestry(self):
"""
Tests if dataframe ancestry is stored correctly for dropped column of
dataset.
"""
# Check ancestry for dropped dataframe
# Confirm dropped column has the original dataframe in ancestry
dataframe_id = self.syncer_obj.get_modeldb_id_for_object(
self.dropped_data)
ancestry = self.syncer_obj.client.getDataFrameAncestry(
dataframe_id).ancestors
self.assertEqual(len(ancestry), 2)
df_1 = ancestry[0]
df_2 = ancestry[1]
df1_schema = df_1.schema
df2_schema = df_2.schema
self.assertEqual(len(df1_schema), 7)
self.assertEqual(len(df2_schema), 8)
# Ancestor is the original dataframe
self.assertEqual(df_2.tag, 'occupation dataset')
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Pass in -test flag if you wish'
' to run unittests on this workflow')
parser.add_argument('-test', action='store_true')
args = parser.parse_args()
if args.test:
suite = unittest.TestLoader().loadTestsFromTestCase(
TestLinearModelEndToEnd)
unittest.TextTestRunner().run(suite)
else:
run_linear_model_workflow()