forked from privacytrustlab/ml_privacy_meter
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_audit_dp.py
200 lines (172 loc) · 6.51 KB
/
run_audit_dp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
"""This file is the main entry point for running the privacy auditing tool."""
import argparse
import math
import time
import torch
import yaml
import numpy as np
from audit import (
get_average_audit_results,
audit_models,
get_all_dp_audit_results,
get_dp_audit_results_for_k_pos_k_neg,
)
from get_signals import get_model_signals
from models.utils import load_models, dp_load_models, train_models, dp_train_models
from util import (
check_configs,
setup_log,
initialize_seeds,
create_directories,
load_dataset,
load_canary_dataset,
split_dataset_for_training_poisson,
)
# Enable benchmark mode in cudnn to improve performance when input sizes are consistent
torch.backends.cudnn.benchmark = True
def main():
print(20 * "-")
print("Privacy Meter Tool!")
print(20 * "-")
# Parse arguments
parser = argparse.ArgumentParser(description="Run privacy auditing tool.")
parser.add_argument(
"--cf",
type=str,
default="configs/cifar10.yaml",
help="Path to the configuration YAML file.",
)
args = parser.parse_args()
# Load configuration file
with open(args.cf, "rb") as f:
configs = yaml.load(f, Loader=yaml.Loader)
# Validate configurations
check_configs(configs)
# Initialize seeds for reproducibility
initialize_seeds(configs["run"]["random_seed"])
# Create necessary directories
log_dir = configs["run"]["log_dir"]
directories = {
"log_dir": log_dir,
"report_dir": f"{log_dir}/report",
"signal_dir": f"{log_dir}/signals",
"data_dir": configs["data"]["data_dir"],
}
create_directories(directories)
# Set up logger
logger = setup_log(
directories["report_dir"], "time_analysis", configs["run"]["time_log"]
)
start_time = time.time()
# Load the canary dataset
baseline_time = time.time()
if configs["dp_audit"].get("canary_dataset", "none") == "none":
dataset, population = load_dataset(configs, directories["data_dir"], logger)
canary_dataset = torch.utils.data.Subset(
dataset, np.arange(configs["dp_audit"]["canary_size"])
)
elif configs["dp_audit"].get("canary_dataset", "none") == "cifar10_canary":
canary_dataset, _ = load_canary_dataset(
configs, directories["data_dir"], logger
)
if configs["dp_audit"]["canary_size"] > len(canary_dataset):
raise ValueError(
"canary data size cannot be larger than the whole cifar10 dataset."
)
canary_dataset = torch.utils.data.Subset(
canary_dataset, np.arange(configs["dp_audit"]["canary_size"])
)
clean_dataset, population = load_dataset(
configs, directories["data_dir"], logger
)
# subsample clean dataset to ensure that the number of clean samples + the number of canary samples = size of the whole training dataset
clean_dataset = torch.utils.data.Subset(
clean_dataset,
np.arange(configs["dp_audit"]["canary_size"], len(clean_dataset)),
)
dataset = torch.utils.data.ConcatDataset([canary_dataset, clean_dataset])
else:
raise NotImplementedError(
f"canary dataset {configs['dp_audit']} is not supported"
)
logger.info("Loading dataset took %0.5f seconds", time.time() - baseline_time)
# Define experiment parameters
num_experiments = configs["run"]["num_experiments"]
num_reference_models = configs["audit"]["num_ref_models"]
num_model_pairs = max(math.ceil(num_experiments / 2.0), num_reference_models + 1)
# Load or train models
baseline_time = time.time()
if configs["dp_audit"]["training_alg"] == "dp":
models_list, memberships = dp_load_models(
log_dir, dataset, num_model_pairs * 2, configs, logger
)
else:
models_list, memberships = load_models(
log_dir, dataset, num_model_pairs * 2, configs, logger
)
if models_list is None:
# Split dataset for training two models per pair
data_splits, memberships = split_dataset_for_training_poisson(
len(dataset), num_model_pairs
)
if configs["dp_audit"]["training_alg"] == "dp":
models_list = dp_train_models(
log_dir, dataset, data_splits, memberships, configs, logger
)
elif configs["dp_audit"]["training_alg"] == "nondp":
models_list = train_models(
log_dir, dataset, data_splits, memberships, configs, logger
)
logger.info(
"Model loading/training took %0.1f seconds", time.time() - baseline_time
)
auditing_dataset = canary_dataset
auditing_membership = memberships[:, : len(canary_dataset)].reshape(
(memberships.shape[0], len(canary_dataset))
)
population = torch.utils.data.Subset(
population,
np.random.choice(
len(population),
configs["audit"].get("population_size", len(population)),
replace=False,
),
)
# Generate signals (softmax outputs) for all models
baseline_time = time.time()
signals = get_model_signals(models_list, auditing_dataset, configs, logger)
population_signals = get_model_signals(
models_list, population, configs, logger, is_population=True
)
logger.info("Preparing signals took %0.5f seconds", time.time() - baseline_time)
# Perform the privacy audit
baseline_time = time.time()
target_model_indices = list(range(num_experiments))
mia_score_list, membership_list = audit_models(
f"{directories['report_dir']}/exp",
target_model_indices,
signals,
population_signals,
auditing_membership,
num_reference_models,
logger,
configs,
)
get_all_dp_audit_results(
directories["report_dir"], mia_score_list, membership_list, logger
)
# k_neg = 900
# k_pos = 59700
# get_dp_audit_results_for_k_pos_k_neg(directories["report_dir"], mia_score_list, membership_list, logger, k_pos, k_neg)
if len(target_model_indices) > 1:
logger.info(
"Auditing privacy risk took %0.1f seconds", time.time() - baseline_time
)
# Get average audit results across all experiments
if len(target_model_indices) > 1:
get_average_audit_results(
directories["report_dir"], mia_score_list, membership_list, logger
)
logger.info("Total runtime: %0.5f seconds", time.time() - start_time)
if __name__ == "__main__":
main()