|
| 1 | +import pytest |
| 2 | + |
| 3 | +import e3nn |
| 4 | +import torch |
| 5 | + |
| 6 | +from e3tools.nn import AxisToMul, MulToAxis |
| 7 | + |
| 8 | + |
| 9 | + |
| 10 | +@pytest.mark.parametrize( |
| 11 | + "irreps_in, factor", |
| 12 | + zip( |
| 13 | + ["0e + 1o", "8x0e + 8x1o + 8x2e", "8x0e + 8x1o + 8x2e", "3x1o + 3x2o"], |
| 14 | + [1, 2, 4, 3], |
| 15 | + ), |
| 16 | +) |
| 17 | +def test_axis_to_mul_shape(irreps_in: str, factor: int, batch_size: int = 5): |
| 18 | + irreps_in = e3nn.o3.Irreps(irreps_in) |
| 19 | + layer = AxisToMul(irreps_in, factor) |
| 20 | + assert layer.irreps_in == irreps_in |
| 21 | + |
| 22 | + input = irreps_in.randn(batch_size, factor, -1) |
| 23 | + output = layer(input) |
| 24 | + |
| 25 | + assert output.shape == (batch_size, factor * irreps_in.dim) |
| 26 | + |
| 27 | + |
| 28 | +@pytest.mark.parametrize( |
| 29 | + "irreps_in, factor", |
| 30 | + zip( |
| 31 | + ["0e + 1o", "8x0e + 8x1o + 8x2e", "8x0e + 8x1o + 8x2e", "3x1o + 3x2o"], |
| 32 | + [1, 2, 4, 3], |
| 33 | + ), |
| 34 | +) |
| 35 | +def test_mul_to_axis_shape(irreps_in: str, factor: int, batch_size: int = 5): |
| 36 | + irreps_in = e3nn.o3.Irreps(irreps_in) |
| 37 | + layer = MulToAxis(irreps_in, factor) |
| 38 | + assert layer.irreps_in == irreps_in |
| 39 | + |
| 40 | + input = irreps_in.randn(batch_size, -1) |
| 41 | + output = layer(input) |
| 42 | + |
| 43 | + assert output.shape == (batch_size, factor, irreps_in.dim // factor) |
| 44 | + |
| 45 | + |
| 46 | + |
| 47 | +@pytest.mark.parametrize( |
| 48 | + "irreps_in, factor", |
| 49 | + zip( |
| 50 | + ["0e + 1o", "8x0e + 8x1o + 8x2e", "8x0e + 8x1o + 8x2e", "3x1o + 3x2o"], |
| 51 | + [1, 2, 4, 3], |
| 52 | + ), |
| 53 | +) |
| 54 | +def test_inverse(irreps_in: str, factor: int, batch_size: int = 5): |
| 55 | + irreps_in = e3nn.o3.Irreps(irreps_in) |
| 56 | + layer = MulToAxis(irreps_in, factor) |
| 57 | + inv_layer = AxisToMul(layer.irreps_out, factor) |
| 58 | + |
| 59 | + assert layer.irreps_in == irreps_in |
| 60 | + assert inv_layer.irreps_out == irreps_in |
| 61 | + |
| 62 | + input = irreps_in.randn(batch_size, -1) |
| 63 | + output = layer(input) |
| 64 | + recovered = inv_layer(output) |
| 65 | + |
| 66 | + assert torch.allclose(input, recovered) |
0 commit comments