forked from irom-princeton/PAC-Vision-Planning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPAC_Bayes_opt.py
240 lines (183 loc) · 7.98 KB
/
PAC_Bayes_opt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import cvxpy as cvx
import scipy
import numpy as np
import sys
import json
import warnings
warnings.filterwarnings('ignore')
def optimize_PAC_bound(costs_precomputed, p0, delta):
'''Optimize McAllester (Maurer) PAC bound using Relative Entropy Programming'''
# Number of actions
L = len(p0)
# Number of environments
m = np.shape(costs_precomputed)[0]
# Discretize lambdas
lambdas = np.linspace(0,1,100)
# Initialize vectors for storing optimal solutions
taus = np.zeros(len(lambdas))
ps = len(lambdas)*[p0]
for k in range(len(lambdas)):
lambda0 = lambdas[k]
# Create cost function variable
tau = cvx.Variable()
# Create variable for probability vector
p = cvx.Variable(L)
cost_empirical = (1/m)*cvx.sum(costs_precomputed*p)
# Constraints
constraints = [lambda0**2 >= (cvx.sum(cvx.kl_div(p, p0)) + np.log(2*np.sqrt(m)/delta))/(2*m), lambda0 == (tau - cost_empirical), p >= 0, cvx.sum(p) == 1]
prob = cvx.Problem(cvx.Minimize(tau), constraints)
# Solve problem
opt = prob.solve(verbose=False, solver=cvx.MOSEK) # , max_iters=3000)
# Store optimal value and optimizer
if (opt > 1.0):
taus[k] = 1.0
if p.value is not None:
ps[k] = p.value
else:
taus[k] = opt
ps[k] = p.value
# Find minimizer
min_ind = np.argmin(taus)
tau_opt = taus[min_ind]
p_opt = ps[min_ind]
new_emp_cost = (costs_precomputed @ p_opt).mean()
return tau_opt, p_opt, taus, new_emp_cost
def optimize_quad_PAC_bound_bisection(costs_precomputed, p0, delta):
'''Performs REP on the quadratic PAC-Bayes bound by sweeping on L_hat,
bisectional search on lambda'''
# Number of actions
L = len(p0)
# Number of environments
m = np.shape(costs_precomputed)[0]
C_bar = (1/m)*(np.ones((1,m)) @ costs_precomputed)
min_cost = np.min(C_bar)
max_cost = np.max(C_bar)
print(np.ceil((max_cost-min_cost)/0.001))
L_hats = np.linspace(min_cost, max_cost, int(np.ceil((max_cost-min_cost)/0.001)))
R_p0 = np.log(2*np.sqrt(m)/delta)/(2*m)
# Initialize vectors for storing optimal solutions
tau_opt = ((C_bar@p0 + R_p0)**0.5 + R_p0**0.5)**2
p_opt = p0
for j in range(len(L_hats)):
terminate = False
L_hat = L_hats[j]
min_lambda0 = (L_hat*R_p0 + R_p0**2)**0.5
max_lambda0 = (tau_opt - L_hat)/2 - R_p0
if min_lambda0 > max_lambda0:
# If this happens then the prior gives a lower tau than any valid
# lambda choice
terminate = True
while not terminate:
lambda0 = (min_lambda0 + max_lambda0)/2
# Create cost function variable
tau = cvx.Variable()
# Create variable for probability vector
p = cvx.Variable(L)
cost_empirical = (1/m)*cvx.sum(costs_precomputed*p)
R = (cvx.sum(cvx.kl_div(p, p0)) + np.log(2*np.sqrt(m)/delta))/(2*m)
# R = 0.0
# Constraints
constraints = [tau >= L_hat + 2*R + 2*lambda0,
lambda0**2 >= L_hat*R + R**2,
L_hat == cost_empirical,
p >= 0,
cvx.sum(p) == 1]
prob = cvx.Problem(cvx.Minimize(tau), constraints)
# Solve problem
opt = prob.solve(verbose=False, solver=cvx.MOSEK) # , max_iters=3000)
if np.isinf(opt) or (opt is None):
min_lambda0 = lambda0
else:
max_lambda0 = lambda0
if np.abs(lambda0 - (min_lambda0 + max_lambda0)/2) < 0.001:
terminate = True
# Store optimal value and optimizer
if (opt < tau_opt):
tau_opt = opt
p_opt = p.value
new_emp_cost = (costs_precomputed @ p_opt).mean()
return tau_opt, p_opt, new_emp_cost
def kl_inverse(q, c):
'''Compute kl inverse using Relative Entropy Programming'''
p_bernoulli = cvx.Variable(2)
q_bernoulli = np.array([q,1-q])
constraints = [c >= cvx.sum(cvx.kl_div(q_bernoulli,p_bernoulli)), 0 <= p_bernoulli[0], p_bernoulli[0] <= 1, p_bernoulli[1] == 1.0-p_bernoulli[0]]
prob = cvx.Problem(cvx.Maximize(p_bernoulli[0]), constraints)
# Solve problem
prob.solve(verbose=False, solver=cvx.MOSEK) # solver=cvx.ECOS
return p_bernoulli.value[0]
if __name__ == "__main__":
import argparse
def collect_as(coll_type):
class Collect_as(argparse.Action):
def __call__(self, parser, namespace, values, options_string=None):
setattr(namespace, self.dest, coll_type(values))
return Collect_as
parser = argparse.ArgumentParser(description='PAC-Bayes Optimization')
parser.add_argument('--config_file', type=str)
parser.add_argument('--num_envs', type=int, default=-1)
parser.add_argument('--num_policies', type=int, default=-1)
args = parser.parse_args()
params = json.load(open(args.config_file))
num_trials = args.num_envs
num_actions = args.num_policies
delta = params['delta']
save_file_v = params['save_file_v']
example = params['example']
#################################################################################################
C_arr = []
C_max = 0
for j in range(5):# j \in {0,1,2,3,4}
file = "Weights/C_biped"+str(7101+100*j)+"-"+str(7201+100*j)+".npy"
C_arr.append(np.load(file))
C_max = max(C_max,C_arr[j].max())
# print(file)
# print(C_max)
C = np.concatenate((C_arr[0],C_arr[1],C_arr[2],C_arr[3],C_arr[4]),axis=0)
C_arr_emp = []
for j in range(5):# j \in {0,1,2,3,4}
file = "Weights/C_biped"+str(11000+100*j)+"-"+str(11100+100*j)+".npy"
C_arr_emp.append(np.load(file))
C_max = max(C_max,C_arr_emp[j].max())
# print(file)
# print(C_max)
C_emp = np.concatenate((C_arr_emp[0],C_arr_emp[1],C_arr_emp[2],C_arr_emp[3],C_arr_emp[4]),axis=0)
scale_factor = max(C.max(),C_emp.max())
C = C/scale_factor
C_emp = C_emp/scale_factor
#################################################################################################
# C = np.load("Weights/C_"+save_file_v+".npy")
# C = np.load("Weights/C_biped7101-7201.npy")
if num_trials == -1:
num_trials = C.shape[0]
num_actions = C.shape[1]
# C_emp = np.load("Weights/C_"+example+"_emp_test.npy")
# C_emp = np.load("Weights/C_biped15101-15201_emp_test.npy")
C = C[:num_trials,:num_actions]
C_emp = C_emp[:,:num_actions]
# C = C/C_emp.max()
p0 = np.ones(num_actions)/num_actions
print('========================')
print(' Mc Allester Opt ')
print('========================')
tau_opt, p_opt, taus, new_emp_cost = optimize_PAC_bound(C, p0, delta)
print("McAllester PAC Bound:", tau_opt)
print("New Emp Cost on Train Data:", new_emp_cost)
r = (np.sum(scipy.special.kl_div(p_opt, p0)) + np.log(2*np.sqrt(num_trials)/delta))/(2*num_trials)
print("R:",r)
pac_bound = kl_inverse(new_emp_cost, 2*r)
print("KL-inv PAC bound:", pac_bound)
print("True Cost Estimate:", (C_emp @ p_opt).mean())
print('========================')
print(' Quad Opt ')
print('========================')
tau_opt, p_opt, new_emp_cost = optimize_quad_PAC_bound_bisection(C, p0, delta)
print("Quad PAC Bound:", tau_opt)
print("New Emp Cost on Train Data:", new_emp_cost)
r = (np.sum(scipy.special.kl_div(p_opt, p0)) + np.log(2*np.sqrt(num_trials)/delta))/(2*num_trials)
print("R:",r)
quad_pac_bound = kl_inverse(new_emp_cost, 2*r)
print("KL-inv PAC bound:", quad_pac_bound)
print("True Cost Estimate:", (C_emp @ p_opt).mean())
if quad_pac_bound < pac_bound:
np.save("Weights/p_"+save_file_v+".npy", p_opt)