|
| 1 | +# YOLOv5-Lite:Lighter, faster and easier to deploy  |
| 2 | + |
| 3 | + |
| 4 | + |
| 5 | +Perform a series of ablation experiments on yolov5 to make it lighter (smaller Flops, lower memory, and fewer parameters) and faster (add shuffle channel, yolov5 head for channel reduce. It can infer at least 10+ FPS On the Raspberry Pi 4B when input the frame with 320×320) and is easier to deploy (removing the Focus layer and four slice operations, reducing the model quantization accuracy to an acceptable range). |
| 6 | + |
| 7 | + |
| 8 | + |
| 9 | +## Comparison of ablation experiment results |
| 10 | + |
| 11 | + ID|Model | Input_size|Flops| Params | Size(M) |Map@0.5|Map@.5:0.95 |
| 12 | + :-----:|:-----:|:-----:|:----------:|:----:|:----:|:----:|:----:| |
| 13 | +001| yolo-fastest| 320×320|0.25G|0.35M|1.4| 24.4| - |
| 14 | +002| YOLOv5-Lite<sub>e</sub><sup>ours</sup>|320×320|0.73G|0.78M|1.7| 35.1|-| |
| 15 | +003| NanoDet-m| 320×320| 0.72G|0.95M|1.8|- |20.6 |
| 16 | +004| yolo-fastest-xl| 320×320|0.72G|0.92M|3.5| 34.3| - |
| 17 | +005| YOLOX<sub>Nano</sub>|416×416|1.08G|0.91M|7.3(fp32)| -|25.8| |
| 18 | +006| yolov3-tiny| 416×416| 6.96G|6.06M|23.0| 33.1|16.6 |
| 19 | +007| yolov4-tiny| 416×416| 5.62G|8.86M| 33.7|40.2|21.7 |
| 20 | +008| YOLOv5-Lite<sub>s</sub><sup>ours</sup>| 416×416|1.66G |1.64M|3.4| 42.0|25.2 |
| 21 | +009| YOLOv5-Lite<sub>c</sub><sup>ours</sup>| 512×512|5.92G |4.57M|9.2| 50.9|32.5| |
| 22 | +010| NanoDet-EfficientLite2| 512×512| 7.12G|4.71M|18.3|- |32.6 |
| 23 | +011| YOLOv5s(6.0)| 640×640| 16.5G|7.23M|14.0| 56.0|37.2 |
| 24 | +012| YOLOv5-Lite<sub>g</sub><sup>ours</sup>| 640×640|15.6G |5.39M|10.9| 57.6|39.1| |
| 25 | + |
| 26 | +See the wiki: https://github.com/ppogg/YOLOv5-Lite/wiki/Test-the-map-of-models-about-coco |
| 27 | + |
| 28 | +## Comparison on different platforms |
| 29 | + |
| 30 | +Equipment|Computing backend|System|Input|Framework|v5lite-e|v5lite-s|v5lite-c|v5lite-g|YOLOv5s |
| 31 | +:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---: |
| 32 | +Inter|@i5-10210U|window(x86)|640×640|openvino|-|-|46ms|-|131ms |
| 33 | +Nvidia|@RTX 2080Ti|Linux(x86)|640×640|torch|-|-|-|15ms|14ms |
| 34 | +Redmi K30|@Snapdragon 730G|Android(armv8)|320×320|ncnn|27ms|38ms|-|-|163ms |
| 35 | +Xiaomi 10|@Snapdragon 865|Android(armv8)|320×320|ncnn|10ms|14ms|-|-|163ms |
| 36 | +Raspberrypi 4B|@ARM Cortex-A72|Linux(arm64)|320×320|ncnn|-|84ms|-|-|371ms |
| 37 | +Raspberrypi 4B|@ARM Cortex-A72|Linux(arm64)|320×320|mnn|-|76ms|-|-|356ms |
| 38 | +AXera-Pi|Cortex A7@CPU<br />3.6TOPs @NPU|Linux(arm64)|640×640|axpi|-|-|-|22ms|22ms |
| 39 | + |
| 40 | + |
| 41 | +* The above is a 4-thread test benchmark |
| 42 | +* Raspberrypi 4B enable bf16s optimization,[Raspberrypi 64 Bit OS](http://downloads.raspberrypi.org/raspios_arm64/images/raspios_arm64-2020-08-24/) |
| 43 | + |
| 44 | +### qq交流群:993965802 |
| 45 | + |
| 46 | +入群答案:剪枝 or 蒸馏 or 量化 or 低秩分解(任意其一均可) |
| 47 | + |
| 48 | +## ·Model Zoo· |
| 49 | + |
| 50 | +#### @v5lite-e: |
| 51 | + |
| 52 | +Model|Size|Backbone|Head|Framework|Design for |
| 53 | +:---:|:---:|:---:|:---:|:---:|:--- |
| 54 | +v5Lite-e.pt|1.7m|shufflenetv2(Megvii)|v5Litee-head|Pytorch|Arm-cpu |
| 55 | +v5Lite-e.bin<br />v5Lite-e.param|1.7m|shufflenetv2|v5Litee-head|ncnn|Arm-cpu |
| 56 | +v5Lite-e-int8.bin<br />v5Lite-e-int8.param|0.9m|shufflenetv2|v5Litee-head|ncnn|Arm-cpu |
| 57 | +v5Lite-e-fp32.mnn|3.0m|shufflenetv2|v5Litee-head|mnn|Arm-cpu |
| 58 | +v5Lite-e-fp32.tnnmodel<br />v5Lite-e-fp32.tnnproto|2.9m|shufflenetv2|v5Litee-head|tnn|arm-cpu |
| 59 | +v5Lite-e-320.onnx|3.1m|shufflenetv2|v5Litee-head|onnxruntime|x86-cpu |
| 60 | + |
| 61 | +#### @v5lite-s: |
| 62 | + |
| 63 | +Model|Size|Backbone|Head|Framework|Design for |
| 64 | +:---:|:---:|:---:|:---:|:---:|:--- |
| 65 | +v5Lite-s.pt|3.4m|shufflenetv2(Megvii)|v5Lites-head|Pytorch|Arm-cpu |
| 66 | +v5Lite-s.bin<br />v5Lite-s.param|3.3m|shufflenetv2|v5Lites-head|ncnn|Arm-cpu |
| 67 | +v5Lite-s-int8.bin<br />v5Lite-s-int8.param|1.7m|shufflenetv2|v5Lites-head|ncnn|Arm-cpu |
| 68 | +v5Lite-s.mnn|3.3m|shufflenetv2|v5Lites-head|mnn|Arm-cpu |
| 69 | +v5Lite-s-int4.mnn|987k|shufflenetv2|v5Lites-head|mnn|Arm-cpu |
| 70 | +v5Lite-s-fp16.bin<br />v5Lite-s-fp16.xml|3.4m|shufflenetv2|v5Lites-head|openvivo|x86-cpu |
| 71 | +v5Lite-s-fp32.bin<br />v5Lite-s-fp32.xml|6.8m|shufflenetv2|v5Lites-head|openvivo|x86-cpu |
| 72 | +v5Lite-s-fp16.tflite|3.3m|shufflenetv2|v5Lites-head|tflite|arm-cpu |
| 73 | +v5Lite-s-fp32.tflite|6.7m|shufflenetv2|v5Lites-head|tflite|arm-cpu |
| 74 | +v5Lite-s-int8.tflite|1.8m|shufflenetv2|v5Lites-head|tflite|arm-cpu |
| 75 | +v5Lite-s-416.onnx|6.4m|shufflenetv2|v5Lites-head|onnxruntime|x86-cpu |
| 76 | + |
| 77 | +#### @v5lite-c: |
| 78 | + |
| 79 | +Model|Size|Backbone|Head|Framework|Design for |
| 80 | +:---:|:---:|:---:|:---:|:---:|:---: |
| 81 | +v5Lite-c.pt|9m|PPLcnet(Baidu)|v5s-head|Pytorch|x86-cpu / x86-vpu |
| 82 | +v5Lite-c.bin<br />v5Lite-c.xml|8.7m|PPLcnet|v5s-head|openvivo|x86-cpu / x86-vpu |
| 83 | +v5Lite-c-512.onnx|18m|PPLcnet|v5s-head|onnxruntime|x86-cpu |
| 84 | + |
| 85 | +#### @v5lite-g: |
| 86 | + |
| 87 | +Model|Size|Backbone|Head|Framework|Design for |
| 88 | +:---:|:---:|:---:|:---:|:---:|:---: |
| 89 | +v5Lite-g.pt|10.9m|Repvgg(Tsinghua)|v5Liteg-head|Pytorch|x86-gpu / arm-gpu / arm-npu |
| 90 | +v5Lite-g-int8.engine|8.5m|Repvgg-yolov5|v5Liteg-head|Tensorrt|x86-gpu / arm-gpu / arm-npu |
| 91 | +v5lite-g-int8.tmfile|8.7m|Repvgg-yolov5|v5Liteg-head|Tengine| arm-npu |
| 92 | +v5Lite-g-640.onnx|21m|Repvgg-yolov5|yolov5-head|onnxruntime|x86-cpu |
| 93 | +v5Lite-g-640.joint|7.1m|Repvgg-yolov5|yolov5-head|axpi|arm-npu |
| 94 | + |
| 95 | +#### Download Link: |
| 96 | + |
| 97 | +> - [ ] `v5lite-e.pt`: | [Baidu Drive](https://pan.baidu.com/s/1bjXo7KIFkOnB3pxixHeMPQ) | [Google Drive](https://drive.google.com/file/d/1_DvT_qjznuE-ev_pDdGKwRV3MjZ3Zos8/view?usp=sharing) |<br> |
| 98 | +>> |──────`ncnn-fp16`: | [Baidu Drive](https://pan.baidu.com/s/1_QvWvkhHB7kdcRZ6k4at1g) | [Google Drive](https://drive.google.com/drive/folders/1w4mThJmqjhT1deIXMQAQ5xjWI3JNyzUl?usp=sharing) |<br> |
| 99 | +>> |──────`ncnn-int8`: | [Baidu Drive](https://pan.baidu.com/s/1JO8qbbVx6zJ-6aq5EgM6PA) | [Google Drive](https://drive.google.com/drive/folders/1YNtNVWlRqN8Dwc_9AtRkN0LFkDeJ92gN?usp=sharing) |<br> |
| 100 | +>> └──────`onnx-fp32`: | [Baidu Drive](https://pan.baidu.com/s/1gwLqiPLTDjlSqWJ7AnEB1A) | [Google Drive](https://drive.google.com/file/d/15_z6VlbWuonsHak-7bdtw-QOcvOaMddB/view?usp=sharing) |<br> |
| 101 | +> - [ ] `v5lite-s.pt`: | [Baidu Drive](https://pan.baidu.com/s/1j0n0K1kqfv1Ouwa2QSnzCQ) | [Google Drive](https://drive.google.com/file/d/1ccLTmGB5AkKPjDOyxF3tW7JxGWemph9f/view?usp=sharing) |<br> |
| 102 | +>> |──────`ncnn-fp16`: | [Baidu Drive](https://pan.baidu.com/s/1kWtwx1C0OTTxbwqJyIyXWg) | [Google Drive](https://drive.google.com/drive/folders/1w4mThJmqjhT1deIXMQAQ5xjWI3JNyzUl?usp=sharing) |<br> |
| 103 | +>> |──────`ncnn-int8`: | [Baidu Drive](https://pan.baidu.com/s/1QX6-oNynrW-f3i0P0Hqe4w) | [Google Drive](https://drive.google.com/drive/folders/1YNtNVWlRqN8Dwc_9AtRkN0LFkDeJ92gN?usp=sharing) |<br> |
| 104 | +>> |──────`mnn-fp16`: | [Baidu Drive](https://pan.baidu.com/s/12lOtPTl4xujWm5BbFJh3zA) | [Google Drive](https://drive.google.com/drive/folders/1PpFoZ4b8mVs1GmMxgf0WUtXUWaGK_JZe?usp=sharing) |<br> |
| 105 | +>> |──────`mnn-int4`: | [Baidu Drive](https://pan.baidu.com/s/11fbjFi18xkq4ltAKUKDOCA) | [Google Drive](https://drive.google.com/drive/folders/1mSU8g94c77KKsHC-07p5V3tJOZYPQ-g6?usp=sharing) |<br> |
| 106 | +>> |──────`onnx-fp32`: | [Baidu Drive](https://pan.baidu.com/s/1gwLqiPLTDjlSqWJ7AnEB1A) | [Google Drive](https://drive.google.com/file/d/123feVchyuqCRZV038I1Gn1gpJEVK4GFh/view?usp=sharing) |<br> |
| 107 | +>> └──────`tengine-fp32`: | [Baidu Drive](https://pan.baidu.com/s/123r630O8Fco7X59wFU1crA) | [Google Drive](https://drive.google.com/drive/folders/1VWmI2BC9MjH7BsrOz4VlSDVnZMXaxGOE?usp=sharing) |<br> |
| 108 | +> - [ ] `v5lite-c.pt`: [Baidu Drive](https://pan.baidu.com/s/1obs6uRB79m8e3uASVR6P1A) | [Google Drive](https://drive.google.com/file/d/1lHYRQKjqKCRXghUjwWkUB0HQ8ccKH6qa/view?usp=sharing) |<br> |
| 109 | +>> |──────`onnx-fp32`: | [Baidu Drive](https://pan.baidu.com/s/1gwLqiPLTDjlSqWJ7AnEB1A) | [Google Drive](https://drive.google.com/file/d/1VJBfZPikTce5vUatC2ZsAWQlmMdcArs2/view?usp=sharing) |<br> |
| 110 | +>> └──────`openvino-fp16`: | [Baidu Drive](https://pan.baidu.com/s/18p8HAyGJdmo2hham250b4A) | [Google Drive](https://drive.google.com/drive/folders/1s4KPSC4B0shG0INmQ6kZuPLnlUKAATyv?usp=sharing) |<br> |
| 111 | +> - [ ] `v5lite-g.pt`: | [Baidu Drive](https://pan.baidu.com/s/14zdTiTMI_9yTBgKGbv9pQw) | [Google Drive](https://drive.google.com/file/d/1oftzqOREGqDCerf7DtD5BZp9YWELlkMe/view?usp=sharing) |<br> |
| 112 | +>> |──────`onnx-fp32`: | [Baidu Drive](https://pan.baidu.com/s/1gwLqiPLTDjlSqWJ7AnEB1A) | [Google Drive](https://drive.google.com/file/d/1bJByk9eoS6pv8Z3N4bcLRCV3i7uk24aU/view?usp=sharing) |<br> |
| 113 | +>> └──────`axpi-int8`: [Google Drive](https://github.com/AXERA-TECH/ax-models/blob/main/ax620/v5Lite-g-sim-640.joint) |<br> |
| 114 | +
|
| 115 | + |
| 116 | + |
| 117 | +Baidu Drive Password: `pogg` |
| 118 | + |
| 119 | +#### v5lite-s model: TFLite Float32, Float16, INT8, Dynamic range quantization, ONNX, TFJS, TensorRT, OpenVINO IR FP32/FP16, Myriad Inference Engin Blob, CoreML |
| 120 | +[https://github.com/PINTO0309/PINTO_model_zoo/tree/main/180_YOLOv5-Lite](https://github.com/PINTO0309/PINTO_model_zoo/tree/main/180_YOLOv5-Lite) |
| 121 | + |
| 122 | +#### Thanks for PINTO0309:[https://github.com/PINTO0309/PINTO_model_zoo/tree/main/180_YOLOv5-Lite](https://github.com/PINTO0309/PINTO_model_zoo/tree/main/180_YOLOv5-Lite) |
| 123 | + |
| 124 | + |
| 125 | +## <div>How to use</div> |
| 126 | + |
| 127 | +<details open> |
| 128 | +<summary>Install</summary> |
| 129 | + |
| 130 | +[**Python>=3.6.0**](https://www.python.org/) is required with all |
| 131 | +[requirements.txt](https://github.com/ppogg/YOLOv5-Lite/blob/master/requirements.txt) installed including |
| 132 | +[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/): |
| 133 | +<!-- $ sudo apt update && apt install -y libgl1-mesa-glx libsm6 libxext6 libxrender-dev --> |
| 134 | + |
| 135 | +```bash |
| 136 | +$ git clone https://github.com/ppogg/YOLOv5-Lite |
| 137 | +$ cd YOLOv5-Lite |
| 138 | +$ pip install -r requirements.txt |
| 139 | +``` |
| 140 | + |
| 141 | +</details> |
| 142 | + |
| 143 | +<details> |
| 144 | +<summary>Inference with detect.py</summary> |
| 145 | + |
| 146 | +`detect.py` runs inference on a variety of sources, downloading models automatically from |
| 147 | +the [latest YOLOv5-Lite release](https://github.com/ppogg/YOLOv5-Lite/releases) and saving results to `runs/detect`. |
| 148 | + |
| 149 | +```bash |
| 150 | +$ python detect.py --source 0 # webcam |
| 151 | + file.jpg # image |
| 152 | + file.mp4 # video |
| 153 | + path/ # directory |
| 154 | + path/*.jpg # glob |
| 155 | + 'https://youtu.be/NUsoVlDFqZg' # YouTube |
| 156 | + 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream |
| 157 | +``` |
| 158 | + |
| 159 | +</details> |
| 160 | + |
| 161 | +<details open> |
| 162 | +<summary>Training</summary> |
| 163 | + |
| 164 | +```bash |
| 165 | +$ python train.py --data coco.yaml --cfg v5lite-e.yaml --weights v5lite-e.pt --batch-size 128 |
| 166 | + v5lite-s.yaml v5lite-s.pt 128 |
| 167 | + v5lite-c.yaml v5lite-c.pt 96 |
| 168 | + v5lite-g.yaml v5lite-g.pt 64 |
| 169 | +``` |
| 170 | + |
| 171 | + If you use multi-gpu. It's faster several times: |
| 172 | + |
| 173 | + ```bash |
| 174 | +$ python -m torch.distributed.launch --nproc_per_node 2 train.py |
| 175 | +``` |
| 176 | + |
| 177 | +</details> |
| 178 | + |
| 179 | +</details> |
| 180 | + |
| 181 | +<details open> |
| 182 | +<summary>DataSet</summary> |
| 183 | + |
| 184 | +Training set and test set distribution (the path with xx.jpg) |
| 185 | + |
| 186 | + ```bash |
| 187 | +train: ../coco/images/train2017/ |
| 188 | +val: ../coco/images/val2017/ |
| 189 | +``` |
| 190 | +```bash |
| 191 | +├── images # xx.jpg example |
| 192 | +│ ├── train2017 |
| 193 | +│ │ ├── 000001.jpg |
| 194 | +│ │ ├── 000002.jpg |
| 195 | +│ │ └── 000003.jpg |
| 196 | +│ └── val2017 |
| 197 | +│ ├── 100001.jpg |
| 198 | +│ ├── 100002.jpg |
| 199 | +│ └── 100003.jpg |
| 200 | +└── labels # xx.txt example |
| 201 | + ├── train2017 |
| 202 | + │ ├── 000001.txt |
| 203 | + │ ├── 000002.txt |
| 204 | + │ └── 000003.txt |
| 205 | + └── val2017 |
| 206 | + ├── 100001.txt |
| 207 | + ├── 100002.txt |
| 208 | + └── 100003.txt |
| 209 | +``` |
| 210 | + |
| 211 | +</details> |
| 212 | + |
| 213 | +<details open> |
| 214 | +<summary>Auto LabelImg</summary> |
| 215 | + |
| 216 | +[**Link** :https://github.com/ppogg/AutoLabelImg](https://github.com/ppogg/AutoLabelImg) |
| 217 | + |
| 218 | +You can use LabelImg based YOLOv5-5.0 and YOLOv5-Lite to AutoAnnotate, biubiubiu 🚀 🚀 🚀 |
| 219 | +<img src="https://user-images.githubusercontent.com/82716366/177030174-dc3a5827-2821-4d8c-8d78-babe83c42fbf.JPG" width="950"/><br/> |
| 220 | + |
| 221 | + |
| 222 | +</details> |
| 223 | + |
| 224 | +<details open> |
| 225 | +<summary>Model Hub</summary> |
| 226 | + |
| 227 | +Here, the original components of YOLOv5 and the reproduced components of YOLOv5-Lite are organized and stored in the [model hub](https://github.com/ppogg/YOLOv5-Lite/tree/master/models/hub): |
| 228 | + |
| 229 | +  |
| 230 | + |
| 231 | + <details open> |
| 232 | +<summary>Heatmap Analysis</summary> |
| 233 | + |
| 234 | + |
| 235 | + ```bash |
| 236 | +$ python main.py --type all |
| 237 | +``` |
| 238 | + |
| 239 | + |
| 240 | + |
| 241 | + Updating ... |
| 242 | + |
| 243 | +</details> |
| 244 | + |
| 245 | +## How to deploy |
| 246 | + |
| 247 | +[**ncnn**](https://github.com/ppogg/YOLOv5-Lite/blob/master/cpp_demo/ncnn/README.md) for arm-cpu |
| 248 | + |
| 249 | +[**mnn**](https://github.com/ppogg/YOLOv5-Lite/blob/master/cpp_demo/mnn/README.md) for arm-cpu |
| 250 | + |
| 251 | +[**openvino**](https://github.com/ppogg/YOLOv5-Lite/blob/master/python_demo/openvino/README.md) x86-cpu or x86-vpu |
| 252 | + |
| 253 | +[**tensorrt(C++)**](https://github.com/ppogg/YOLOv5-Lite/blob/master/cpp_demo/tensorrt/README.md) for arm-gpu or arm-npu or x86-gpu |
| 254 | + |
| 255 | +[**tensorrt(Python)**](https://github.com/ppogg/YOLOv5-Lite/tree/master/python_demo/tensorrt) for arm-gpu or arm-npu or x86-gpu |
| 256 | + |
| 257 | +[**Android**](https://github.com/ppogg/YOLOv5-Lite/blob/master/android_demo/ncnn-android-v5lite/README.md) for arm-cpu |
| 258 | + |
| 259 | +## Android_demo |
| 260 | + |
| 261 | +This is a Redmi phone, the processor is Snapdragon 730G, and yolov5-lite is used for detection. The performance is as follows: |
| 262 | + |
| 263 | +link: https://github.com/ppogg/YOLOv5-Lite/tree/master/android_demo/ncnn-android-v5lite |
| 264 | + |
| 265 | +Android_v5Lite-s: https://drive.google.com/file/d/1CtohY68N2B9XYuqFLiTp-Nd2kuFWgAUR/view?usp=sharing |
| 266 | + |
| 267 | +Android_v5Lite-g: https://drive.google.com/file/d/1FnvkWxxP_aZwhi000xjIuhJ_OhqOUJcj/view?usp=sharing |
| 268 | + |
| 269 | +new android app:[link] https://pan.baidu.com/s/1PRhW4fI1jq8VboPyishcIQ [keyword] pogg |
| 270 | + |
| 271 | +<img src="https://user-images.githubusercontent.com/82716366/149959014-5f027b1c-67b6-47e2-976b-59a7c631b0f2.jpg" width="650"/><br/> |
| 272 | + |
| 273 | +## More detailed explanation |
| 274 | + |
| 275 | +#### Detailed model link: |
| 276 | + |
| 277 | + What is YOLOv5-Lite S/E model: |
| 278 | + zhihu link (Chinese): https://zhuanlan.zhihu.com/p/400545131 |
| 279 | + |
| 280 | + What is YOLOv5-Lite C model: |
| 281 | + zhihu link (Chinese): https://zhuanlan.zhihu.com/p/420737659 |
| 282 | + |
| 283 | + What is YOLOv5-Lite G model: |
| 284 | + zhihu link (Chinese): https://zhuanlan.zhihu.com/p/410874403 |
| 285 | + |
| 286 | + How to deploy on ncnn with fp16 or int8: |
| 287 | + csdn link (Chinese): https://blog.csdn.net/weixin_45829462/article/details/119787840 |
| 288 | + |
| 289 | + How to deploy on onnxruntime: |
| 290 | + zhihu link (Chinese): https://zhuanlan.zhihu.com/p/476533259 |
| 291 | + |
| 292 | + How to deploy on tensorrt: |
| 293 | + zhihu link (Chinese): https://zhuanlan.zhihu.com/p/478630138 |
| 294 | + |
| 295 | + How to optimize on tensorrt: |
| 296 | + zhihu link (Chinese): https://zhuanlan.zhihu.com/p/463074494 |
| 297 | + |
| 298 | +## Reference |
| 299 | + |
| 300 | +https://github.com/ultralytics/yolov5 |
| 301 | + |
| 302 | +https://github.com/megvii-model/ShuffleNet-Series |
| 303 | + |
| 304 | +https://github.com/Tencent/ncnn |
| 305 | + |
| 306 | +## Citing YOLOv5-Lite |
| 307 | +If you use YOLOv5-Lite in your research, please cite our work and give a star ⭐: |
| 308 | + |
| 309 | +``` |
| 310 | + @misc{yolov5lite2021, |
| 311 | + title = {YOLOv5-Lite: Lighter, faster and easier to deploy}, |
| 312 | + author = {Xiangrong Chen and Ziman Gong}, |
| 313 | + doi = {10.5281/zenodo.5241425} |
| 314 | + year={2021} |
| 315 | +} |
| 316 | +``` |
0 commit comments