-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer_vos.py
473 lines (347 loc) · 16.5 KB
/
infer_vos.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
"""
Single-scale inference
Copyright (c) 2021 TU Darmstadt
Author: Nikita Araslanov <nikita.araslanov@tu-darmstadt.de>
License: Apache License 2.0
"""
import os
import sys
import numpy as np
import imageio
import time
import argparse
import torch.multiprocessing as mp
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as Transform
from utils import Timer
from utils import check_dir
from palette_davis import palette as davis_palette
from torch.utils.data import DataLoader
from dataset.Inference_Dataset import DataSeg
from labelprop.common import LabelPropVOS_DINO
from PIL import Image
# deterministic inference
from torch.backends import cudnn
import vision_transformer as vits
from utils import check_before_run
cudnn.enabled = True
cudnn.benchmark = False
cudnn.deterministic = True
VERBOSE = True
def free_mem():
t = torch.cuda.get_device_properties(0).total_memory
r = torch.cuda.memory_reserved(0)
a = torch.cuda.memory_allocated(0)
f = r-a # free inside reserved
return f
def mask2rgb(mask, palette):
mask_rgb = palette(mask)
mask_rgb = mask_rgb[:,:,:3]
return mask_rgb
def mask_overlay(mask, image, palette):
"""Creates an overlayed mask visualisation"""
mask_rgb = mask2rgb(mask, palette)
return 0.3 * image + 0.7 * mask_rgb
class ResultWriter:
def __init__(self, palette, out_path):
self.palette = palette
self.out_path = out_path
self.verbose = VERBOSE
def save(self, frames, masks_pred, masks_gt, flags, fn, seq_name):
# vos is the mask output
subdir_vos = os.path.join(self.out_path, "vos")
check_dir(subdir_vos, seq_name)
# vis is the blended output
subdir_vis = os.path.join(self.out_path, "vis")
check_dir(subdir_vis, seq_name)
for frame_id, mask in enumerate(masks_pred.split(1, 0)):
mask = mask[0].numpy().astype(np.uint8)
filepath = os.path.join(subdir_vos, seq_name, "{}.png".format(fn[frame_id][0]))
# saving only every 5th frame
if flags[frame_id] != 0:
# print(mask.shape)
imageio.imwrite(filepath, mask)
if self.verbose:
frame = frames[frame_id].numpy()
#mask_gt = masks_gt[frame_id].numpy().astype(np.uint8)
#masks = np.concatenate([mask, mask_gt], 1)
#frame = np.concatenate([frame, frame], 2)
frame = np.transpose(frame, [1,2,0])
overlay = mask_overlay(mask, frame, self.palette)
filepath = os.path.join(subdir_vis, seq_name, "{}.png".format(fn[frame_id][0]))
imageio.imwrite(filepath, (overlay * 255.).astype(np.uint8))
def convert_dict(state_dict):
new_dict = {}
for k,v in state_dict.items():
new_key = k.replace("module.", "")
new_dict[new_key] = v
return new_dict
def mask2tensor(mask, idx, num_classes=7):
# h,w -> 1, C, h, w
h,w = mask.shape
mask_t = torch.zeros(1,num_classes,h,w)
mask_t[0, idx] = mask
return mask_t
def configure_tracks(args, masks_gt, tracks, num_objects):
"""Selecting masks for initialisation
Args:
masks_gt: [T,H,W]
tracks: [T]
"""
# NOTE: For DAVIS, masks are given only at the first frame,
# while for YTVOS, the masks will be gradually included from intermediate frames)
init_masks = {} # {first time step: mask}
# we always have first mask
# if there are no instances, it will be simply zero
H,W = masks_gt[0].shape[-2:]
init_masks[0] = torch.zeros(1, args.num_classes, H, W)
# loop of classes
for oid in range(args.num_classes):
t = tracks[oid].item() # the first frame step for oid class
if not t in init_masks:
init_masks[t] = mask2tensor(masks_gt[oid], oid)
else:
init_masks[t] += mask2tensor(masks_gt[oid], oid)
return init_masks
def make_onehot(mask, HW):
# convert mask tensor with probabilities to a one-hot tensor
b,c,h,w = mask.shape
mask_up = F.interpolate(mask, HW, mode="bilinear", align_corners=True)
one_hot = torch.zeros_like(mask_up)
one_hot.scatter_(1, mask_up.argmax(1, keepdim=True), 1)
one_hot = F.interpolate(one_hot, (h,w), mode="bilinear", align_corners=True)
return one_hot
def scale_smallest(frame, a):
H,W = frame.shape[-2:]
s = a / min(H, W)
h, w = int(s * H), int(s * W)
return F.interpolate(frame, (h, w), mode="bilinear", align_corners=True)
def valid_mask(mask):
"""From a tensor [1,C,h,w]
create [1,C,1,1] 0/1 mask saying which IDs are present"""
B,C,h,w = mask.shape
valid = mask.flatten(2,3).sum(-1) > 0
# print(valid.shape) # 1, 7
valid = valid.type_as(mask).view(B,C,1,1)
# print(valid.shape) # 1, 7, 1, 1
return valid
def merge_mask_ids(masks, key0):
merged_mask = torch.zeros_like(masks[key0])
for tt, mask in masks.items():
merged_mask[:,1:] += mask[:,1:]
probs, ids = merged_mask.max(1, keepdim=True)
merged_mask.zero_()
merged_mask.scatter(1, ids, probs)
merged_mask[:, :1] = 1 - probs
return merged_mask
@torch.no_grad()
def extract_feature(args, model, frames):
# get patch embed
# return: 1, dim, h, w
if next(model.parameters()).is_cuda:
out = model.get_intermediate_layers(frames, n=args.test_last_n_layer)[0]
else:
out = model.get_intermediate_layers(frames.cpu(), n=args.test_last_n_layer)[0]
out = out[:, 1:, :] # B, N, C
h, w = int(frames.shape[-2] / model.patch_embed.patch_size), int(frames.shape[-1] / model.patch_embed.patch_size)
dim = out.shape[-1]
out = out.reshape(-1, h, w, dim)
embd0 = out.permute(0,3,1,2)
return embd0
def norm_mask(mask):
# mask: 7, h, w
c, h, w = mask.size()
for cnt in range(c):
mask_cnt = mask[cnt,:,:]
if(mask_cnt.max() > 0):
mask_cnt = (mask_cnt - mask_cnt.min())
mask_cnt = mask_cnt/mask_cnt.max()
mask[cnt,:,:] = mask_cnt
return mask
def load_mask(cache_dir, size_mask_neighborhood, h, w,):
# generating mask is time consuming, so we pre-caculate the masks and cache them under cache_dir
mask_name = 'shape_{}_{}_r_{}.pth'.format(h, w, size_mask_neighborhood)
print('Loading mask {}'.format(mask_name))
mask_path = os.path.join(cache_dir, mask_name)
assert os.path.exists(mask_path), print(mask_path)
mask = torch.load(mask_path)
print('Loaded mask size is {}'.format(mask.shape))
return mask
def step_seg(args, labelprop, mask_init, frames, frames_feat=None, net=None):
scale_as = lambda x, y: F.interpolate(x, y.shape[-2:], mode="bilinear", align_corners=True)
scale = lambda x, hw: F.interpolate(x, hw, mode="bilinear", align_corners=True)
T = frames.shape[0]
# ===== TO CUDA ====
for t in mask_init.keys():
mask_init[t] = mask_init[t].cuda()
H, W = mask_init[0].shape[-2:] # H, W is the original image size, the output mask will be
ref_embd = {} # context embeddings
ref_masks = {}
ref_valid = {}
all_masks = [] # class id of each pixel
all_masks_conf = [] # confidence
# copy from DINO script
def add_result(mask_pred):
# input: output mask of labelprop
# mask_pred: 1, 7, h, w
# interpolate to original size
mask_pred = F.interpolate(mask_pred, scale_factor=args.patch_size, mode='bilinear', align_corners=False, recompute_scale_factor=False)[0]
# one-hot to category
mask_pred = norm_mask(mask_pred) # NOTE: We recommend to use it for DAVIS, while not for YTVOS.
_, nxt_masks_id = torch.max(mask_pred, dim=0)
# resize to original size.
nxt_masks_id = np.array(nxt_masks_id.squeeze().cpu(), dtype=np.uint8)
nxt_masks_id = np.array(Image.fromarray(nxt_masks_id).resize((W, H), 0))
all_masks.append(torch.from_numpy(nxt_masks_id).unsqueeze(0))
return all_masks
# ====== extract first frame feat ======
embd0 = extract_feature(args, net, frames[:1].cuda())
# ====== down scale first seg to embed size =====
mask0 = scale_as(mask_init[0], embd0)
_, mask0_id = torch.max(mask_init[0].cpu(), dim=1) #
all_masks.append(mask0_id)
ref_embd[0] = {0: embd0} # key mean , value
ref_masks[0] = {0: mask0}
ref_valid[0] = valid_mask(mask0) # [x,c,1,1]
# add this to the reference context
# if there are objects
ref_index = []
if mask_init[0].sum() > 0:
ref_index = [0]
# load cached masks (for the sake of efficiency)
mask_neighborhood = load_mask(args.mask_cache_path, args.size_mask_neighborhood, embd0.shape[-2], embd0.shape[-1], )
mask_neighborhood = mask_neighborhood.cuda()
print(">", end='')
for t in range(1, T):
print(".", end='')
sys.stdout.flush()
frames_batch = frames[t:t+1].cuda()
nxt_embd = extract_feature(args, net, frames_batch)
ref_t = [0] if len(ref_index) == 0 else ref_index
# loop of reference indexes
nxt_masks = {}
for t0 in ref_t:
cxt_index = labelprop.context_index(t0, t) # print(labelprop.context_index(2,10)) # [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 5, 6, 7, 8, 9]
cxt_embd = [ref_embd[t0][j] for j in cxt_index]
cxt_masks = [ref_masks[t0][j] for j in cxt_index]
nxt_masks[t0], mask_neighborhood = labelprop.predict(args, cxt_embd, cxt_masks, nxt_embd, mask_neighborhood)
torch.cuda.empty_cache()
# merging all the masks from diffferent reference masks
nxt_mask = sum([ref_valid[tt] * nxt_masks[tt] for tt in nxt_masks.keys()])
#nxt_mask = merge_mask_ids(nxt_masks, ref_t[0]) # 1, 7, 60, 113
# ===== if there exists new adding labels in current frame =====
if t in mask_init: # not t >= 0
print("Adding GT mask t = ", t)
# adding the initial mask if just appeared (replace the GT )
mask_init_dn = scale_as(mask_init[t], nxt_embd)
mask_init_dn_s = mask_init_dn.sum(1, keepdim=True)
nxt_mask = (1 - mask_init_dn_s) * nxt_mask + mask_init_dn_s * mask_init_dn
# adding to context
ref_embd[t] = {}
ref_masks[t] = {}
ref_valid[t] = valid_mask(mask_init[t])
ref_index.append(t)
add_result(nxt_mask)
ref_t = [0] if len(ref_index) == 0 else ref_index
# updating the context
for t0 in ref_t:
ref_embd[t0][t] = nxt_embd.clone()
ref_masks[t0][t] = nxt_mask.clone()
index_short = labelprop.context_long(t0, t)
tsteps = list(ref_embd[t0].keys())
for tt in tsteps:
if t - tt > args.n_last_frames and not tt in index_short:
del ref_embd[t0][tt]
del ref_masks[t0][tt]
print('<')
masks_pred = torch.cat(all_masks, 0)
# masks_pred_conf = torch.cat(all_masks_conf, 0)
torch.cuda.empty_cache()
return masks_pred
def extra_args(parser):
parser.add_argument('--arch', default='vit_small', type=str,
choices=['vit_tiny', 'vit_small', 'vit_base', 'resnet50'], help='Architecture (support only ViT atm).')
parser.add_argument('--patch_size', default=8, type=int, help='Patch resolution of the model.')
parser.add_argument("--checkpoint_key", default="student", type=str, help='Key to use in the checkpoint (example: "teacher")')
parser.add_argument("--topk", type=int, default=5, help="accumulate label from top k neighbors")
parser.add_argument("--n_last_frames", type=int, default=10, help="number of preceeding frames")
parser.add_argument("--size_mask_neighborhood", default=40, type=int,
help="We restrict the set of source nodes considered to a spatial neighborhood of the query node")
parser.add_argument('--img_size', default=64, type=int, help='Initialized learnable PE size of ViT.')
parser.add_argument("--test_last_n_layer", type=int, default=6, help="Batch size, try to reduce if OOM")\
parser.add_argument('--mask_cache_path', default='', type=str, help="Path to cached masks.")
parser.add_argument('--remark', default='', type=str, help="Path to pretrained weights to evaluate.")
parser.add_argument("--scale_size", type=int, default=480, help="scale size of input img, davis (480), ytvos None")
parser.add_argument("--round_number", type=int, default=8, help="image" )
parser.add_argument('--workers', type=int, default=8,
metavar='N', help='dataloader threads')
parser.add_argument('--mask-output-dir', type=str, default=None, help='inference output dir')
parser.add_argument("--infer-list", default="voc12/val.txt", type=str)
parser.add_argument("--resume", type=str, default=None, help="Snapshot \"ID,iter\" to load")
parser.add_argument("--num_classes", type=int, default=7, help="one-hot vector length" )
return parser
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="INO")
parser = extra_args(parser)
args = parser.parse_args(sys.argv[1:])
if args.scale_size == -1:
args.scale_size = None
else:
args.scale_size = [args.scale_size]
print('Iamge scale size is {}, Round number is {}'.format(args.scale_size, args.round_number))
print('Inference parameters are topk {} n_last_frames {} size_mask_neighborhood {} test_last_n_layer {}'.format(args.topk, args.n_last_frames, args.size_mask_neighborhood, args.test_last_n_layer))
# initialising the dirs
check_dir(args.mask_output_dir, "vis") # visualization save dir
check_dir(args.mask_output_dir, "vos") # mask save dir
# initialising label propagtion module
labelprop = LabelPropVOS_DINO(args)
# initialising model (if using extracted feature, the model is not needed)
model= vits.__dict__[args.arch](img_size=[args.img_size, args.img_size], patch_size=args.patch_size, num_classes=0)
print(f"Model {args.arch} {args.patch_size}x{args.patch_size} built.")
model.cuda()
vits.load_pretrained_weights(model, args.resume, args.checkpoint_key, args.arch, args.patch_size, filter_keys=True)
print('Pretrained weights loaded.')
for param in model.parameters():
param.requires_grad = False
model.eval()
# check before run for resuming
infer_list_pth = args.infer_list
vos_save_dir = os.path.join(args.mask_output_dir, "vos")
rest_lines = check_before_run(infer_list_pth, vos_save_dir)
# load dataset
dataset = DataSeg(args, rest_lines, num_classes=args.num_classes)
dataloader = DataLoader(dataset, batch_size=1, shuffle=False, \
drop_last=False) #, num_workers=args.workers)
palette = dataloader.dataset.get_palette()
timer = Timer()
### Multi-process for
print('multi-process initializing ... ')
pool = mp.Pool(processes=args.workers)
writer = ResultWriter(davis_palette, args.mask_output_dir)
print('multi-process initialized')
# loop of video sequence.
for iter, batch in tqdm(enumerate(dataloader)):
frames_orig, frames, masks_gt, tracks, num_ids, fns, flags, seq_name = batch
# print(seq_name,) # tuple ('xxxx', )
# print(fns, ) # list [('00000',), ('00001',), ('00002',), ('00003',),]
# print(frames[0].shape) # 69, 3, 480, 910
print("Sequence {:02d} | {}".format(iter, seq_name[0]))
# flatten the 1 bacth dim
masks_gt = masks_gt.flatten(0,1) # mask [7, 480, 910]
frames_orig = frames_orig.flatten(0,1) # original frames: [69, 3, 480, 910]
frames = frames.flatten(0,1) # rounded frames: [69, 3, 480, 904]
tracks = tracks.flatten(0,1) # tacks of the first occurance of each class: [7]
flags = flags.flatten(0,1) # indicates whether to save the seg results for current frame: [69]
init_masks = configure_tracks(args, masks_gt, tracks, num_ids[0])
assert 0 in init_masks, "initial frame has no instances"
with torch.no_grad():
masks_pred = step_seg(args, labelprop, init_masks, frames, net=model) # init_masks: {0:(1, 7, h, w), 40:(1, 7, h, w)}, key indicates the frame index of first occurance
frames_orig = dataset.denorm(frames_orig)
# save results
pool.apply_async(writer.save, args=(frames_orig, masks_pred.cpu(), masks_gt.cpu(), flags, fns, seq_name[0]))
timer.stage("Inference completed")
pool.close()
pool.join()