-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathsource.rs
933 lines (855 loc) · 36.8 KB
/
source.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at https://mozilla.org/MPL/2.0/.
use bitvec::prelude::{BitSlice, Lsb0};
use futures::{SinkExt, StreamExt};
use propolis::common::{GuestAddr, GuestData, PAGE_SIZE};
use propolis::migrate::{
MigrateCtx, MigrateStateError, Migrator, PayloadOutputs,
};
use propolis::vmm;
use propolis_api_types::instance_spec::VersionedInstanceSpec;
use slog::{debug, error, info, trace, warn};
use std::collections::HashMap;
use std::convert::TryInto;
use std::io;
use std::ops::{Range, RangeInclusive};
use tokio_tungstenite::tungstenite::protocol::frame::coding::CloseCode;
use tokio_tungstenite::tungstenite::protocol::CloseFrame;
use tokio_tungstenite::{tungstenite, WebSocketStream};
use uuid::Uuid;
use crate::migrate::codec::Message;
use crate::migrate::memx;
use crate::migrate::preamble::Preamble;
use crate::migrate::probes;
use crate::migrate::protocol::Protocol;
use crate::migrate::{codec, protocol};
use crate::migrate::{
Device, DevicePayload, MigrateError, MigratePhase, MigrateRole,
MigrationState, PageIter,
};
use crate::vm::objects::VmObjects;
use crate::vm::state_publisher::{
ExternalStateUpdate, MigrationStateUpdate, StatePublisher,
};
use super::MigrateConn;
/// Specifies which pages should be offered during a RAM transfer phase.
///
/// On Dirty Pages and the Discipline Thereof
/// -----------------------------------------
///
/// In an ideal world, a migration would only ever transfer pages of the guest's
/// address space which have actually been touched by the guest; we don't want
/// to waste time sending a bunch of zero pages on the wire. RAM is offered to
/// the migration destination in two phases: first, we transfer the majority of
/// the guest's RAM prior to pausing the guest, and second, after pausing the
/// guest, we transfer any pages which have been touched since when we performed
/// the first transfer. This way, we perform most of the RAM transfer while the
/// guest is still running, and only re-transfer pages which have been dirtied
/// again while paused.
///
/// Transferring only dirty pages is made possible by bhyve's
/// `VM_TRACK_DIRTY_PAGES` and `VM_NPT_OPERATION`` ioctls. The
/// `VM_TRACK_DIRTY_PAGES` ioctl allows us to generate a bitmap of which pages
/// have their dirty flags set, allowing us to offer only those pages when
/// performing a RAM transfer. Because `VM_TRACK_DIRTY_PAGES`` also clears the
/// dirty bits, if we call the ioctl when offering the initial pre-pause RAM
/// transfer, and then again when performing the post-pause RAM transfer, the
/// second ioctl call will see only the dirty bits that were set *since* when
/// the initial transfer was performed, allowing us to offer only the pages
/// which have been touched since we transferred most of the memory.
///
/// Sounds simple enough, right? Well, here's where things get interesting.
/// Should a migration *fail* after transferring RAM, all the dirty bits on the
/// guest's pages will have been cleared by the `VM_TRACK_DIRTY_PAGES` ioctl.
/// This means that, for a naive implementation which just always transfers only
/// the pages marked as dirty by the ioctl, a second or third migration attempt
/// will not transfer any pages whose dirty bits were cleared by the first
/// migration attempt and haven't been touched again since then. This is bad
/// news! The guest has written to those pages, and, just because it hasn't
/// touched them since the last migration attempt, it may still care about that
/// memory, and attempt to read what it put there again in the future --- with
/// unpleasant results, if we haven't transferred that memory.
///
/// There are two potential ways we can solve this, and --- as you're about to
/// discover --- we implement both of them:
///
/// 1. The obvious solution: we can just offer all RAM in the pre-pause RAM push
/// phase, clearing any dirty bits, and then offer only dirty pages in the
/// post-pause RAM push phase. This has the nice property that it's trivially
/// correct no matter how many migration attempts it takes before we actually
/// migrate a guest successfully. It also has the less nice property that
/// we're offering a bunch of pages that the guest has never actually touched
/// and doesn't care about.
/// 2. The clever solution: what if we had a way to put the dirty bit *back*
/// after we've cleared it? If such a thing existed, we could record which
/// pages were dirty when we performed the RAM transfers, and then, should
/// the migration fail, go back and put those dirty bits *back*, so that a
/// potential future migration attempt will still see that those pages are
/// dirty and offer them again.
///
/// The good news is that there is, in fact, a way to do that, using the
/// `VM_NPT_OPERATION` ioctl's `VNO_OP_SET_DIRTY` operation (which, in Propolis,
/// we pronounce like [`VmmHdl::set_dirty_pages`]). However, the less good news
/// is that this ioctl isn't available in all the bhyve versions that Propolis
/// supports, as it was added in bhyve v17. Therefore, we implement both
/// solutions, depending on which bhyve version is present. If we have
/// VM_NPT_OPERATION, both the pre-pause and post-pause RAM push phases will use
/// [`RamOfferDiscipline::OfferDirty`], and only offer dirty pages, recording
/// any dirty bits that were cleared by the `VM_TRACK_DIRTY_PAGES` ioctl. If we
/// don't have `VM_NPT_OPERATION`, we use [`RamOfferDiscipline::OfferAll`] in
/// the pre-pause phase, and [`RamOfferDiscipline::OfferDirty`] only in the
/// post-pause phase. Because we can't put the dirty bits back, we have to offer
/// all the memory in the first phase, but we can still use dirty page tracking
/// to avoid re-offering pages that were transferred in the first phase when we
/// do the second RAM offer after pausing the guest.
#[derive(Debug)]
enum RamOfferDiscipline {
/// Offer all pages irrespective of whether they are dirty.
OfferAll,
/// Offer only pages that the hypervisor are marked as dirty.
OfferDirty,
}
/// The interface to an arbitrary version of the source half of the live
/// migration protocol.
//
// Use `async_trait` here to help generate a `Send` bound on the futures
// returned by the functions in this trait.
#[async_trait::async_trait]
pub(crate) trait SourceProtocol {
/// Runs live migration out of the supplied `vm_objects`, writing back any
/// state that must be saved for future migration attempts to
/// `persistent_state`.
///
/// This routine guarantees that the supplied `vm_objects` are paused on
/// success and resumed on failure.
async fn run(
self,
vm_objects: &VmObjects,
publisher: &mut StatePublisher,
persistent_state: &mut PersistentState,
) -> Result<(), MigrateError>;
}
/// Negotiates a live migration protocol version with a target who has connected
/// over `conn`. If this is successful, returns a `SourceProtocol`
/// implementation that can be used to run the requested migration.
pub(crate) async fn initiate<T: MigrateConn>(
log: &slog::Logger,
migration_id: Uuid,
mut conn: WebSocketStream<T>,
vm_objects: &VmObjects,
persistent_state: &PersistentState,
) -> Result<impl SourceProtocol, MigrateError> {
// Create a new log context for the migration
let log = log.new(slog::o!(
"migration_id" => migration_id.to_string(),
"migrate_role" => "source"
));
info!(log, "negotiating migration as source");
// The protocol should start with some text from the destination identifying
// the protocol versions it supports.
let dst_protocols = match conn.next().await {
Some(Ok(tungstenite::Message::Text(dst_protocols))) => dst_protocols,
x => {
error!(
log,
"destination side did not begin migration version handshake: \
{:?}",
x
);
// Tell the destination it misbehaved. This is best-effort.
if let Err(e) = conn
.send(tungstenite::Message::Close(Some(CloseFrame {
code: CloseCode::Protocol,
reason: "did not begin with version handshake.".into(),
})))
.await
{
warn!(log, "failed to send handshake failed message to source";
"error" => ?e);
}
return Err(MigrateError::Initiate);
}
};
// Pick the most favorable protocol from the list the destination supplied
// and send it back to the destination.
info!(log, "destination offered protocols: {}", dst_protocols);
let selected = match protocol::select_protocol_from_offer(&dst_protocols) {
Ok(Some(selected)) => {
conn.send(tungstenite::Message::Text(selected.offer_string()))
.await?;
selected
}
Ok(None) => {
let src_protocols = protocol::make_protocol_offer();
error!(
log,
"no compatible destination protocols";
"dst_protocols" => &dst_protocols,
"src_protocols" => &src_protocols,
);
return Err(MigrateError::NoMatchingProtocol(
src_protocols,
dst_protocols,
));
}
Err(e) => {
error!(log, "failed to parse destination protocol offer";
"dst_protocols" => &dst_protocols,
"error" => %e);
return Err(MigrateError::ProtocolParse(
dst_protocols,
e.to_string(),
));
}
};
info!(log, "selected protocol {:?}", selected);
match selected {
Protocol::RonV0 => Ok(RonV0::new(
log,
vm_objects,
migration_id,
conn,
persistent_state,
)
.await),
}
}
/// State which must be stored across multiple migration attempts.
///
/// This struct is stored on the [`VmController`] so that may be accessed by
/// subsequent [`migrate`] invocations.
#[derive(Default)]
pub(crate) struct PersistentState {
/// Set if we were unable to re-set dirty bits on guest pages after a failed
/// migration attempt. If this occurs, we can no longer offer only dirty
/// pages in a subsequent migration attempt, as some pages which should be
/// marked as dirty may not be.
pub(crate) has_redirtying_ever_failed: bool,
}
/// Context for the source side of protocol version 0 using the RON encoding.
struct RonV0<T: MigrateConn> {
/// The logger to which to log messages from this migration attempt.
log: slog::Logger,
/// The migration's ID.
migration_id: Uuid,
/// Transport to the destination Instance.
conn: WebSocketStream<T>,
/// Guest page table dirty bits to restore in the event of a migration
/// failure, so that a subsequent migration can attempt to offer only dirty
/// pages. These dirty bits are accumulated across all RAM push phases, so
/// that any pages which become dirty after the pre-pause RAM push are also
/// added to these bitmaps.
///
/// This is `Some` if we should attempt to re-set dirty bits on guest pages
/// in the event of a migration failure, and `None` if we cannot do so. It
/// will be `Some` if (and only if):
///
/// - The current bhyve version supports the `VM_NPT_OPERATION` ioctl (i.e.
/// it is at least bhyve v17 or later),
/// - A previous attempt to re-dirty pages has failed (viz.
/// [`PersistentState::has_retrying_ever_failed`]), in which case, we can
/// no longer trust that all previously dirtied pages were re-dirtied
/// correctly.
///
/// Otherwise, we must fall back to always offering all pages in the initial
/// pre-pause RAM push phase.
dirt: Option<HashMap<GuestAddr, PageBitmap>>,
}
const PAGE_BITMAP_SIZE: usize = 4096;
type PageBitmap = [u8; PAGE_BITMAP_SIZE];
impl<T: MigrateConn> RonV0<T> {
async fn new(
log: slog::Logger,
vm: &VmObjects,
migration_id: Uuid,
conn: WebSocketStream<T>,
persistent_state: &PersistentState,
) -> Self {
// Create a (prospective) dirty page map if bhyve supports the NPT
// API. If this map is present and the VM hasn't recorded that it's
// possibly unhealthy, it will be used to offer only dirty pages during
// the pre-pause RAM push.
let dirt = {
let can_npt_operate =
vm.lock_shared().await.vmm_hdl().can_npt_operate();
let has_redirtying_ever_failed =
persistent_state.has_redirtying_ever_failed;
if can_npt_operate && !has_redirtying_ever_failed {
Some(Default::default())
} else {
info!(
log,
"guest pages not redirtyable, will offer all pages in pre-pause";
"can_npt_operate" => can_npt_operate,
"has_redirtying_ever_failed" => has_redirtying_ever_failed
);
None
}
};
Self { log, migration_id, conn, dirt }
}
}
#[async_trait::async_trait]
impl<T: MigrateConn> SourceProtocol for RonV0<T> {
async fn run(
self,
vm_objects: &VmObjects,
publisher: &mut StatePublisher,
persistent_state: &mut PersistentState,
) -> Result<(), MigrateError> {
let mut runner = RonV0Runner {
log: self.log,
migration_id: self.migration_id,
conn: self.conn,
dirt: self.dirt,
vm: vm_objects,
state_publisher: publisher,
persistent_state,
paused: false,
};
runner.run().await
}
}
struct RonV0Runner<'vm, T: MigrateConn> {
log: slog::Logger,
migration_id: Uuid,
conn: WebSocketStream<T>,
dirt: Option<HashMap<GuestAddr, PageBitmap>>,
vm: &'vm VmObjects,
state_publisher: &'vm mut StatePublisher,
persistent_state: &'vm mut PersistentState,
paused: bool,
}
impl<'vm, T: MigrateConn> RonV0Runner<'vm, T> {
fn log(&self) -> &slog::Logger {
&self.log
}
fn update_state(&mut self, state: MigrationState) {
self.state_publisher.update(ExternalStateUpdate::Migration(
MigrationStateUpdate {
state,
id: self.migration_id,
role: MigrateRole::Source,
},
));
}
async fn pause_vm(&mut self) {
assert!(!self.paused);
self.paused = true;
self.vm.lock_exclusive().await.pause().await;
}
async fn resume_vm(&mut self) {
assert!(self.paused);
self.paused = false;
self.vm.lock_exclusive().await.resume();
}
async fn run_phase(
&mut self,
step: MigratePhase,
) -> Result<(), MigrateError> {
probes::migrate_phase_begin!(|| { step.to_string() });
let res = match step {
MigratePhase::MigrateSync => self.sync().await,
MigratePhase::Pause => self.pause().await,
MigratePhase::RamPushPrePause | MigratePhase::RamPushPostPause => {
self.ram_push(&step).await
}
MigratePhase::TimeData => self.time_data().await,
MigratePhase::DeviceState => self.device_state().await,
MigratePhase::RamPull => self.ram_pull().await,
MigratePhase::ServerState => self.server_state().await,
MigratePhase::Finish => self.finish().await,
};
probes::migrate_phase_end!(|| { step.to_string() });
res
}
async fn run(&mut self) -> Result<(), MigrateError> {
info!(self.log(), "Entering Source Migration Task");
let result: Result<_, MigrateError> = async {
self.run_phase(MigratePhase::MigrateSync).await?;
self.run_phase(MigratePhase::RamPushPrePause).await?;
self.run_phase(MigratePhase::Pause).await?;
self.run_phase(MigratePhase::RamPushPostPause).await?;
self.run_phase(MigratePhase::TimeData).await?;
self.run_phase(MigratePhase::DeviceState).await?;
self.run_phase(MigratePhase::RamPull).await?;
self.run_phase(MigratePhase::ServerState).await?;
self.run_phase(MigratePhase::Finish).await?;
Ok(())
}
.await;
if let Err(err) = result {
self.update_state(MigrationState::Error);
let _ = self.send_msg(codec::Message::Error(err.clone())).await;
// If we are capable of setting the dirty bit on guest page table
// entries, re-dirty them, so that a later migration attempt can also
// only offer dirty pages. If we can't use VM_NPT_OPERATION, a
// subsequent migration attempt will offer all pages.
//
// See the lengthy comment on `RamOfferDiscipline` above for more
// details about what's going on here.
let vmm_hdl = self.vm.lock_shared().await.vmm_hdl().clone();
for (&GuestAddr(gpa), dirtiness) in self.dirt.iter().flatten() {
if let Err(e) = vmm_hdl.set_dirty_pages(gpa, dirtiness) {
// Bad news! Our attempt to re-set the dirty bit on these
// pages has failed! Thus, subsequent migration attempts
// /!\ CAN NO LONGER RELY ON DIRTY PAGE TRACKING /!\
// and must always offer all pages in the initial RAM push
// phase.
//
// Record that now so we never try to do this again.
self.persistent_state.has_redirtying_ever_failed = true;
error!(
self.log(),
"failed to restore dirty bits: {e}";
"gpa" => gpa,
);
// No sense continuing to try putting back any remaining
// dirty bits, as we won't be using them any longer.
break;
} else {
debug!(self.log(), "re-dirtied pages at {gpa:#x}",);
}
}
if self.paused {
self.resume_vm().await;
}
Err(err)
} else {
// The VM should be paused after successfully migrating out; the
// state driver assumes as much when subsequently halting the
// instance.
assert!(self.paused);
info!(self.log(), "Source Migration Successful");
Ok(())
}
}
async fn sync(&mut self) -> Result<(), MigrateError> {
self.update_state(MigrationState::Sync);
let preamble = Preamble::new(VersionedInstanceSpec::V0(
self.vm.lock_shared().await.instance_spec().clone().into(),
));
let s = ron::ser::to_string(&preamble)
.map_err(codec::ProtocolError::from)?;
self.send_msg(codec::Message::Serialized(s)).await?;
self.read_ok().await
}
async fn ram_push(
&mut self,
phase: &MigratePhase,
) -> Result<(), MigrateError> {
match phase {
MigratePhase::RamPushPrePause => {
self.update_state(MigrationState::RamPush)
}
MigratePhase::RamPushPostPause => {
self.update_state(MigrationState::RamPushDirty)
}
_ => unreachable!("should only push RAM in a RAM push phase"),
}
let vmm_ram_range = self.vmm_ram_bounds().await?;
let req_ram_range = self.read_mem_query().await?;
info!(
self.log(),
"ram_push ({:?}): got query for range {:#x?}, vm range {:#x?}",
phase,
req_ram_range,
vmm_ram_range
);
// Determine whether we can offer only dirty pages, or if we must offer
// all pages.
//
// Refer to the giant comment on `RamOfferDiscipline` above for more
// details about this determination.
let offer_discipline = match phase {
// If we are in the pre-pause RAM push phase, and we don't have
// VM_NPT_OPERATION to put back any dirty bits if the migration
// fails, we have to offer all pages here.
MigratePhase::RamPushPrePause if self.dirt.is_none() => {
RamOfferDiscipline::OfferAll
}
// Otherwise, if we are in the post-pause phase, or if we *can* just
// put back the dirty bits in the event of a migration failure, we
// need only offer pages that have their dirty bit set.
_ => RamOfferDiscipline::OfferDirty,
};
self.offer_ram(vmm_ram_range, req_ram_range, offer_discipline).await?;
loop {
let m = self.read_msg().await?;
trace!(self.log(), "ram_push: source xfer phase recvd {:?}", m);
match m {
codec::Message::MemDone => break,
codec::Message::MemFetch(start, end, bits) => {
if !memx::validate_bitmap(start, end, &bits) {
error!(self.log(), "invalid bitmap");
return Err(MigrateError::Phase);
}
// XXX: We should do stricter validation on the fetch
// request here. For instance, we shouldn't "push" MMIO
// space or non-existent RAM regions. While we de facto
// do not because of the way access is implemented, we
// should probably disallow it at the protocol level.
self.xfer_ram(start, end, &bits).await?;
probes::migrate_xfer_ram_region!(|| {
let bits = BitSlice::<_, Lsb0>::from_slice(&bits);
let pages = bits.count_ones() as u64;
(
pages,
pages * PAGE_SIZE as u64,
match phase {
MigratePhase::RamPushPrePause => 0,
MigratePhase::RamPushPostPause => 1,
_ => unreachable!(),
},
)
});
}
_ => return Err(MigrateError::UnexpectedMessage),
};
}
info!(self.log(), "ram_push: done sending ram");
self.update_state(MigrationState::Pause);
Ok(())
}
async fn offer_ram(
&mut self,
vmm_ram_range: RangeInclusive<GuestAddr>,
req_ram_range: Range<u64>,
offer_discipline: RamOfferDiscipline,
) -> Result<(), MigrateError> {
info!(
self.log(),
"offering ram";
"discipline" => ?offer_discipline,
"can_redirty_pages" => self.dirt.is_some(),
);
let vmm_ram_start = *vmm_ram_range.start();
let vmm_ram_end = *vmm_ram_range.end();
let mut bits = [0u8; PAGE_BITMAP_SIZE];
let req_start_gpa = req_ram_range.start;
let req_end_gpa = req_ram_range.end;
let start_gpa = req_start_gpa.max(vmm_ram_start.0);
// The RAM bounds reported to this routine set the end of the range to
// the last valid address in the address space (e.g. 0x6FFF for a
// one-page range beginning at 0x6000), but this routine's callees
// expect the end address to be the first invalid (page-aligned) address
// (in our example, 0x7000 instead of 0x6FFF). Correct that here.
//
// N.B. This assumes that the guest address space is small enough to
// add 1 in this fashion without overflowing, i.e. the last valid
// GPA cannot be `u64::MAX`.
let end_gpa = req_end_gpa.min(vmm_ram_end.0);
assert!(end_gpa < u64::MAX);
let end_gpa = end_gpa + 1;
let step = bits.len() * 8 * PAGE_SIZE;
for gpa in (start_gpa..end_gpa).step_by(step) {
let mut pages_offered = 0;
// Always capture the dirty page mask even if the offer discipline
// says to offer all pages. This ensures that pages that are
// transferred now and not touched again will not be offered again
// by a subsequent phase.
self.track_dirty(GuestAddr(gpa), &mut bits).await?;
match offer_discipline {
RamOfferDiscipline::OfferAll => {
for byte in bits.iter_mut() {
*byte = 0xff;
}
pages_offered = PAGE_BITMAP_SIZE * 8;
}
RamOfferDiscipline::OfferDirty => {
let bits = BitSlice::<_, Lsb0>::from_slice(&bits);
let dirty_pages = bits.count_ones();
if dirty_pages == 0 {
continue;
}
pages_offered += dirty_pages;
// If we're on a bhyve version that supports
// VM_NPT_OPERATION, we'll be able to put the dirty bits
// back in the event of a migration failure. Therefore,
// we need to hang onto any bytes and their indices so
// that we can rebuild the dirty page mask later, if
// necessary.
//
// If bhyve doesn't support VM_NPT_OPERATION, no sense
// hanging onto this. We'll just have to offer all pages
// in the initial RAM Offer phase, instead.
if let Some(ref mut dirt) = self.dirt {
let saved = dirt
.entry(GuestAddr(gpa))
.or_insert_with(|| [0u8; PAGE_BITMAP_SIZE]);
let saved = BitSlice::<_, Lsb0>::from_slice_mut(saved);
*saved |= bits;
}
}
}
let end = end_gpa.min(gpa + step as u64);
info!(
self.log(),
"ram_push: offering {pages_offered} pages between {gpa:#x} and {end:#x}"
);
if pages_offered > 0 {
self.send_msg(memx::make_mem_offer(gpa, end, &bits)).await?;
}
}
self.send_msg(codec::Message::MemEnd(req_start_gpa, req_end_gpa)).await
}
async fn xfer_ram(
&mut self,
start: u64,
end: u64,
bits: &[u8],
) -> Result<(), MigrateError> {
info!(self.log(), "ram_push: xfer RAM between {start:#x} and {end:#x}",);
self.send_msg(memx::make_mem_xfer(start, end, bits)).await?;
for addr in PageIter::new(start, end, bits) {
let mut byte_buffer = [0u8; PAGE_SIZE];
{
let mut bytes = GuestData::from(byte_buffer.as_mut_slice());
self.read_guest_mem(GuestAddr(addr), &mut bytes).await?;
}
self.send_msg(codec::Message::Page(byte_buffer.into())).await?;
probes::migrate_xfer_ram_page!(|| (addr, PAGE_SIZE as u64));
}
Ok(())
}
async fn pause(&mut self) -> Result<(), MigrateError> {
self.update_state(MigrationState::Pause);
// Ask the instance to begin transitioning to the paused state
// This will inform each device to pause.
info!(self.log(), "Pausing devices");
self.pause_vm().await;
Ok(())
}
async fn device_state(&mut self) -> Result<(), MigrateError> {
self.update_state(MigrationState::Device);
let mut device_states = vec![];
{
let objects = self.vm.lock_shared().await;
let migrate_ctx =
MigrateCtx { mem: &objects.access_mem().unwrap() };
// Collect together the serialized state for all the devices
objects.for_each_device_fallible(|name, devop| {
let mut dev = Device {
instance_name: name.to_string(),
payload: Vec::new(),
};
match devop.migrate() {
Migrator::NonMigratable => {
error!(self.log(),
"Can't migrate instance with non-migratable device ({})",
name);
return Err(MigrateError::DeviceState(
MigrateStateError::NonMigratable.to_string()));
},
// No device state needs to be trasmitted for 'Empty' devices
Migrator::Empty => {},
Migrator::Single(mech) => {
let out = mech.export(&migrate_ctx)?;
dev.payload.push(DevicePayload {
kind: out.kind.to_owned(),
version: out.version,
data: ron::ser::to_string(&out.payload)
.map_err(codec::ProtocolError::from)?,
});
device_states.push(dev);
}
Migrator::Multi(mech) => {
let mut outputs = PayloadOutputs::new();
mech.export(&mut outputs, &migrate_ctx)?;
for part in outputs {
dev.payload.push(DevicePayload {
kind: part.kind.to_owned(),
version: part.version,
data: ron::ser::to_string(&part.payload)
.map_err(codec::ProtocolError::from)?,
});
}
device_states.push(dev);
}
}
Ok(())
})?;
}
info!(self.log(), "Device States: {device_states:#?}");
self.send_msg(codec::Message::Serialized(
ron::ser::to_string(&device_states)
.map_err(codec::ProtocolError::from)?,
))
.await?;
self.send_msg(codec::Message::Okay).await?;
self.read_ok().await
}
// Read and send over the time data
async fn time_data(&mut self) -> Result<(), MigrateError> {
let vmm_hdl = &self.vm.lock_shared().await.vmm_hdl().clone();
let vm_time_data =
vmm::time::export_time_data(vmm_hdl).map_err(|e| {
MigrateError::TimeData(format!(
"VMM Time Data export error: {}",
e
))
})?;
info!(self.log(), "VMM Time Data: {:#?}", vm_time_data);
let time_data_serialized = ron::ser::to_string(&vm_time_data)
.map_err(codec::ProtocolError::from)?;
info!(self.log(), "VMM Time Data: {:#?}", time_data_serialized);
self.send_msg(codec::Message::Serialized(time_data_serialized)).await?;
self.read_ok().await
}
async fn ram_pull(&mut self) -> Result<(), MigrateError> {
self.update_state(MigrationState::RamPush);
let m = self.read_msg().await?;
info!(self.log(), "ram_pull: got query {:?}", m);
self.update_state(MigrationState::Pause);
self.update_state(MigrationState::RamPushDirty);
self.send_msg(codec::Message::MemEnd(0, !0)).await?;
let m = self.read_msg().await?;
info!(self.log(), "ram_pull: got done {:?}", m);
Ok(())
}
async fn server_state(&mut self) -> Result<(), MigrateError> {
self.update_state(MigrationState::Server);
let remote_addr = match self.read_msg().await? {
Message::Serialized(s) => {
ron::from_str(&s).map_err(codec::ProtocolError::from)?
}
_ => return Err(MigrateError::UnexpectedMessage),
};
let com1_history = self
.vm
.lock_shared()
.await
.com1()
.export_history(remote_addr)
.await?;
self.send_msg(codec::Message::Serialized(com1_history)).await?;
self.read_ok().await
}
async fn finish(&mut self) -> Result<(), MigrateError> {
// Wait for the destination to acknowledge that it's ready to run the
// VM.
self.read_ok().await?;
// Hand control over to the destination. If this send fails, the
// destination won't run the VM and it can resume here.
//
// N.B. After this message is sent, this Propolis (and any of its
// overseers) must assume that the destination has begun running
// the guest.
self.send_msg(codec::Message::Okay).await?;
// Now that handoff is complete, publish that the migration has
// succeeded.
self.update_state(MigrationState::Finish);
// This VMM is going away, so if any guest memory is still dirty, it
// won't be transferred. Assert that there is no such memory.
//
// The unwraps in the block below amount to assertions that the VMM
// exists at this point (it should). Note that returning an error here
// is not permitted because that will cause migration to unwind and the
// VM to resume, which is forbidden at this point (see above).
let vmm_range = self.vmm_ram_bounds().await.unwrap();
let mut bits = [0u8; PAGE_BITMAP_SIZE];
let step = bits.len() * 8 * PAGE_SIZE;
for gpa in (vmm_range.start().0..vmm_range.end().0).step_by(step) {
self.track_dirty(GuestAddr(gpa), &mut bits).await.unwrap();
let pages_left_behind =
BitSlice::<_, Lsb0>::from_slice(&bits).count_ones() as u64;
assert_eq!(
0,
pages_left_behind,
"{pages_left_behind} dirty pages left behind between {:#x}..{:#x}",
gpa,
gpa + step as u64,
);
}
Ok(())
}
async fn read_msg(&mut self) -> Result<codec::Message, MigrateError> {
self.conn
.next()
.await
.ok_or_else(|| {
codec::ProtocolError::Io(io::Error::from(
io::ErrorKind::BrokenPipe,
))
})?
.map_err(codec::ProtocolError::WebsocketError)
// convert tungstenite::Message to codec::Message
.and_then(std::convert::TryInto::try_into)
// If this is an error message, lift that out
.map(|msg| match msg {
codec::Message::Error(err) => {
error!(
self.log(),
"migration failed due to error from target: {err}"
);
Err(MigrateError::RemoteError(
MigrateRole::Destination,
err.to_string(),
))
}
msg => Ok(msg),
})?
}
async fn read_ok(&mut self) -> Result<(), MigrateError> {
match self.read_msg().await? {
codec::Message::Okay => Ok(()),
msg => {
error!(self.log(), "expected `Okay` but received: {msg:?}");
Err(MigrateError::UnexpectedMessage)
}
}
}
async fn read_mem_query(&mut self) -> Result<Range<u64>, MigrateError> {
match self.read_msg().await? {
codec::Message::MemQuery(start, end) => {
if start % PAGE_SIZE as u64 != 0
|| (end % PAGE_SIZE as u64 != 0 && end != !0)
{
return Err(MigrateError::Phase);
}
Ok(start..end)
}
msg => {
error!(self.log(), "expected `MemQuery` but received: {msg:?}");
Err(MigrateError::UnexpectedMessage)
}
}
}
async fn send_msg(
&mut self,
m: codec::Message,
) -> Result<(), MigrateError> {
Ok(self.conn.send(m.try_into()?).await?)
}
async fn vmm_ram_bounds(
&mut self,
) -> Result<RangeInclusive<GuestAddr>, MigrateError> {
let objects = self.vm.lock_shared().await;
let memctx = objects.access_mem().unwrap();
memctx.mem_bounds().ok_or(MigrateError::InvalidInstanceState)
}
async fn track_dirty(
&mut self,
start_gpa: GuestAddr,
bits: &mut [u8],
) -> Result<(), MigrateError> {
self.vm
.lock_shared()
.await
.vmm_hdl()
.track_dirty_pages(start_gpa.0, bits)
.map_err(|_| MigrateError::InvalidInstanceState)
}
async fn read_guest_mem(
&mut self,
addr: GuestAddr,
buf: &mut GuestData<&mut [u8]>,
) -> Result<(), MigrateError> {
let objects = self.vm.lock_shared().await;
let memctx = objects.access_mem().unwrap();
let len = buf.len();
memctx.direct_read_into(addr, buf, len);
Ok(())
}
}