-
Notifications
You must be signed in to change notification settings - Fork 226
/
Copy pathencrypted_model_vlm.py
executable file
·112 lines (82 loc) · 3.59 KB
/
encrypted_model_vlm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
#!/usr/bin/env python3
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import argparse
import numpy as np
import openvino_genai
import openvino
from PIL import Image
from openvino import Tensor
from pathlib import Path
import typing
def decrypt_model(model_dir, model_file_name, weights_file_name):
with open(model_dir + '/' + model_file_name, "r") as file:
model = file.read()
# decrypt model
with open(model_dir + '/' + weights_file_name, "rb") as file:
binary_data = file.read()
# decrypt weights
weights = np.frombuffer(binary_data, dtype=np.uint8).astype(np.uint8)
return model, Tensor(weights)
def read_tokenizer(model_dir):
tokenizer_model_name = 'openvino_tokenizer.xml'
tokenizer_weights_name = 'openvino_tokenizer.bin'
tokenizer_model, tokenizer_weights = decrypt_model(model_dir, tokenizer_model_name, tokenizer_weights_name)
detokenizer_model_name = 'openvino_detokenizer.xml'
detokenizer_weights_name = 'openvino_detokenizer.bin'
detokenizer_model, detokenizer_weights = decrypt_model(model_dir, detokenizer_model_name, detokenizer_weights_name)
return openvino_genai.Tokenizer(tokenizer_model, tokenizer_weights, detokenizer_model, detokenizer_weights)
def streamer(subword: str) -> bool:
'''
Args:
subword: sub-word of the generated text.
Returns: Return flag corresponds whether generation should be stopped.
'''
print(subword, end='', flush=True)
# No value is returned as in this example we don't want to stop the generation in this method.
# "return None" will be treated the same as "return openvino_genai.StreamingStatus.RUNNING".
def read_image(path: str) -> Tensor:
'''
Args:
path: The path to the image.
Returns: the ov.Tensor containing the image.
'''
pic = Image.open(path).convert("RGB")
image_data = np.array(pic)
return Tensor(image_data)
def read_images(path: str) -> list[Tensor]:
entry = Path(path)
if entry.is_dir():
return [read_image(str(file)) for file in sorted(entry.iterdir())]
return [read_image(path)]
def main():
parser = argparse.ArgumentParser()
parser.add_argument('model_dir')
parser.add_argument('image_dir', help="Image file or dir with images")
parser.add_argument('prompt', help="Image file or dir with images")
args = parser.parse_args()
model_name_to_file_map = {
('language', 'openvino_language_model'),
('resampler', 'openvino_resampler_model'),
('text_embeddings', 'openvino_text_embeddings_model'),
('vision_embeddings', 'openvino_vision_embeddings_model')}
models_map = dict()
for model_name, file_name in model_name_to_file_map:
model, weights = decrypt_model(args.model_dir, file_name + '.xml', file_name + '.bin')
models_map[model_name] = (model, weights)
tokenizer = read_tokenizer(args.model_dir)
# GPU and NPU can be used as well.
# Note: If NPU selected, only language model will be run on NPU
device = 'CPU'
enable_compile_cache = dict()
if "GPU" == device:
# Cache compiled models on disk for GPU to save time on the
# next run. It's not beneficial for CPU.
enable_compile_cache["CACHE_DIR"] = "vlm_cache"
pipe = openvino_genai.VLMPipeline(models_map, tokenizer, args.model_dir, device, **enable_compile_cache)
config = openvino_genai.GenerationConfig()
config.max_new_tokens = 100
rgbs = read_images(args.image_dir)
pipe.generate(args.prompt, images=rgbs, generation_config=config, streamer=streamer)
if '__main__' == __name__:
main()