@@ -25,7 +25,7 @@ The applied quantization compression algorithms are divided into two broad categ
25
25
<th>Model</th>
26
26
<th>Compression algorithm</th>
27
27
<th>Dataset</th>
28
- <th>Accuracy  (<em>drop</em>)  %</th>
28
+ <th>Accuracy (<em>drop</em>) %</th>
29
29
<th>Configuration</th>
30
30
<th>Checkpoint</th>
31
31
</tr>
@@ -65,7 +65,7 @@ The applied quantization compression algorithms are divided into two broad categ
65
65
</tr>
66
66
<tr>
67
67
<td align="left">Inception V3</td>
68
- <td align="left">• QAT: INT8<br / >• Sparsity: 61% (RB)</td>
68
+ <td align="left">• QAT: INT8<br>• Sparsity: 61% (RB)</td>
69
69
<td>ImageNet</td>
70
70
<td>76.36 (0.97)</td>
71
71
<td><a href="../examples/torch/classification/configs/sparsity_quantization/inception_v3_imagenet_rb_sparsity_int8.json">Config</a></td>
@@ -105,7 +105,7 @@ The applied quantization compression algorithms are divided into two broad categ
105
105
</tr>
106
106
<tr>
107
107
<td align="left">MobileNet V2</td>
108
- <td align="left">• QAT: INT8<br / >• Sparsity: 52% (RB)</td>
108
+ <td align="left">• QAT: INT8<br>• Sparsity: 52% (RB)</td>
109
109
<td>ImageNet</td>
110
110
<td>71.09 (0.78)</td>
111
111
<td><a href="../examples/torch/classification/configs/sparsity_quantization/mobilenet_v2_imagenet_rb_sparsity_int8.json">Config</a></td>
@@ -169,7 +169,7 @@ The applied quantization compression algorithms are divided into two broad categ
169
169
</tr>
170
170
<tr>
171
171
<td align="left">ResNet-18</td>
172
- <td align="left">• Accuracy-aware compressed training<br / >• Filter pruning: 60%, geometric median criterion</td>
172
+ <td align="left">• Accuracy-aware compressed training<br>• Filter pruning: 60%, geometric median criterion</td>
173
173
<td>ImageNet</td>
174
174
<td>69.2 (-0.6)</td>
175
175
<td><a href="../examples/torch/classification/configs/pruning/resnet18_imagenet_pruning_accuracy_aware.json">Config</a></td>
@@ -185,7 +185,7 @@ The applied quantization compression algorithms are divided into two broad categ
185
185
</tr>
186
186
<tr>
187
187
<td align="left">ResNet-34</td>
188
- <td align="left">• Filter pruning: 50%, geometric median criterion<br / >• Knowledge distillation</td>
188
+ <td align="left">• Filter pruning: 50%, geometric median criterion<br>• Knowledge distillation</td>
189
189
<td>ImageNet</td>
190
190
<td>73.11 (0.19)</td>
191
191
<td><a href="../examples/torch/classification/configs/pruning/resnet34_imagenet_pruning_geometric_median_kd.json">Config</a></td>
@@ -225,15 +225,15 @@ The applied quantization compression algorithms are divided into two broad categ
225
225
</tr>
226
226
<tr>
227
227
<td align="left">ResNet-50</td>
228
- <td align="left">• QAT: INT8<br / >• Sparsity: 61% (RB)</td>
228
+ <td align="left">• QAT: INT8<br>• Sparsity: 61% (RB)</td>
229
229
<td>ImageNet</td>
230
230
<td>75.42 (0.73)</td>
231
231
<td><a href="../examples/torch/classification/configs/sparsity_quantization/resnet50_imagenet_rb_sparsity_int8.json">Config</a></td>
232
232
<td><a href="https://storage.openvinotoolkit.org/repositories/nncf/models/develop/torch/resnet50_imagenet_rb_sparsity_int8.pth">Download</a></td>
233
233
</tr>
234
234
<tr>
235
235
<td align="left">ResNet-50</td>
236
- <td align="left">• QAT: INT8<br / >• Sparsity: 50% (RB)</td>
236
+ <td align="left">• QAT: INT8<br>• Sparsity: 50% (RB)</td>
237
237
<td>ImageNet</td>
238
238
<td>75.50 (0.65)</td>
239
239
<td><a href="../examples/torch/classification/configs/sparsity_quantization/resnet50_imagenet_rb_sparsity50_int8.json">Config</a></td>
@@ -249,7 +249,7 @@ The applied quantization compression algorithms are divided into two broad categ
249
249
</tr>
250
250
<tr>
251
251
<td align="left">ResNet-50</td>
252
- <td align="left">• Accuracy-aware compressed training<br / >• Filter pruning: 52.5%, geometric median criterion</td>
252
+ <td align="left">• Accuracy-aware compressed training<br>• Filter pruning: 52.5%, geometric median criterion</td>
253
253
<td>ImageNet</td>
254
254
<td>75.23 (0.93)</td>
255
255
<td><a href="../examples/torch/classification/configs/pruning/resnet50_imagenet_pruning_accuracy_aware.json">Config</a></td>
@@ -298,7 +298,7 @@ The applied quantization compression algorithms are divided into two broad categ
298
298
<th>Model</th>
299
299
<th>Compression algorithm</th>
300
300
<th>Dataset</th>
301
- <th>mAP  (<em>drop</em>)  %</th>
301
+ <th>mAP (<em>drop</em>) %</th>
302
302
<th>Configuration</th>
303
303
<th>Checkpoint</th>
304
304
</tr>
@@ -314,7 +314,7 @@ The applied quantization compression algorithms are divided into two broad categ
314
314
</tr>
315
315
<tr>
316
316
<td align="left">SSD300‑MobileNet</td>
317
- <td align="left">• QAT: INT8<br / >• Sparsity: 70% (Magnitude)</td>
317
+ <td align="left">• QAT: INT8<br>• Sparsity: 70% (Magnitude)</td>
318
318
<td>VOC12+07 train, VOC07 eval</td>
319
319
<td>62.95 (-0.72)</td>
320
320
<td><a href="../examples/torch/object_detection/configs/ssd300_mobilenet_voc_magnitude_int8.json">Config</a></td>
@@ -338,7 +338,7 @@ The applied quantization compression algorithms are divided into two broad categ
338
338
</tr>
339
339
<tr>
340
340
<td align="left">SSD300‑VGG‑BN</td>
341
- <td align="left">• QAT: INT8<br / >• Sparsity: 70% (Magnitude)</td>
341
+ <td align="left">• QAT: INT8<br>• Sparsity: 70% (Magnitude)</td>
342
342
<td>VOC12+07 train, VOC07 eval</td>
343
343
<td>77.66 (0.62)</td>
344
344
<td><a href="../examples/torch/object_detection/configs/ssd300_vgg_voc_magnitude_sparsity_int8.json">Config</a></td>
@@ -370,7 +370,7 @@ The applied quantization compression algorithms are divided into two broad categ
370
370
</tr>
371
371
<tr>
372
372
<td align="left">SSD512-VGG‑BN</td>
373
- <td align="left">• QAT: INT8<br / >• Sparsity: 70% (Magnitude)</td>
373
+ <td align="left">• QAT: INT8<br>• Sparsity: 70% (Magnitude)</td>
374
374
<td>VOC12+07 train, VOC07 eval</td>
375
375
<td>79.68 (0.58)</td>
376
376
<td><a href="../examples/torch/object_detection/configs/ssd512_vgg_voc_magnitude_sparsity_int8.json">Config</a></td>
@@ -387,7 +387,7 @@ The applied quantization compression algorithms are divided into two broad categ
387
387
<th>Model</th>
388
388
<th>Compression algorithm</th>
389
389
<th>Dataset</th>
390
- <th>mIoU  (<em>drop</em>)  %</th>
390
+ <th>mIoU (<em>drop</em>) %</th>
391
391
<th>Configuration</th>
392
392
<th>Checkpoint</th>
393
393
</tr>
@@ -411,7 +411,7 @@ The applied quantization compression algorithms are divided into two broad categ
411
411
</tr>
412
412
<tr>
413
413
<td align="left">ICNet</td>
414
- <td align="left">• QAT: INT8<br / >• Sparsity: 60% (Magnitude)</td>
414
+ <td align="left">• QAT: INT8<br>• Sparsity: 60% (Magnitude)</td>
415
415
<td>CamVid</td>
416
416
<td>67.16 (0.73)</td>
417
417
<td><a href="../examples/torch/semantic_segmentation/configs/icnet_camvid_magnitude_sparsity_int8.json">Config</a></td>
@@ -435,7 +435,7 @@ The applied quantization compression algorithms are divided into two broad categ
435
435
</tr>
436
436
<tr>
437
437
<td align="left">UNet</td>
438
- <td align="left">• QAT: INT8<br / >• Sparsity: 60% (Magnitude)</td>
438
+ <td align="left">• QAT: INT8<br>• Sparsity: 60% (Magnitude)</td>
439
439
<td>CamVid</td>
440
440
<td>72.46 (-0.51)</td>
441
441
<td><a href="../examples/torch/semantic_segmentation/configs/unet_camvid_magnitude_sparsity_int8.json">Config</a></td>
@@ -459,7 +459,7 @@ The applied quantization compression algorithms are divided into two broad categ
459
459
</tr>
460
460
<tr>
461
461
<td align="left">UNet</td>
462
- <td align="left">• QAT: INT8<br / >• Sparsity: 60% (Magnitude)</td>
462
+ <td align="left">• QAT: INT8<br>• Sparsity: 60% (Magnitude)</td>
463
463
<td>Mapillary</td>
464
464
<td>55.69 (0.55)</td>
465
465
<td><a href="../examples/torch/semantic_segmentation/configs/unet_mapillary_magnitude_sparsity_int8.json">Config</a></td>
@@ -484,7 +484,7 @@ The applied quantization compression algorithms are divided into two broad categ
484
484
<th>PyTorch Model</th>
485
485
<th><img width="20" height="1">Compression algorithm<img width="20" height="1"></th>
486
486
<th>Dataset</th>
487
- <th>Accuracy  (<em>drop</em>)  %</th>
487
+ <th>Accuracy (<em>drop</em>) %</th>
488
488
</tr>
489
489
</thead >
490
490
<tbody align =" center " >
@@ -507,7 +507,7 @@ The applied quantization compression algorithms are divided into two broad categ
507
507
<td>77.22 (0.46)</td>
508
508
</tr>
509
509
<tr>
510
- <td align="left">BERT-large<br / >(Whole Word Masking)</td>
510
+ <td align="left">BERT-large<br>(Whole Word Masking)</td>
511
511
<td align="left">• QAT: INT8</td>
512
512
<td>SQuAD v1.1</td>
513
513
<td>F1: 92.68 (0.53)</td>
@@ -549,7 +549,7 @@ The applied quantization compression algorithms are divided into two broad categ
549
549
<th>Model</th>
550
550
<th>Compression algorithm</th>
551
551
<th>Dataset</th>
552
- <th>Accuracy  (<em>drop</em>)  %</th>
552
+ <th>Accuracy (<em>drop</em>) %</th>
553
553
<th>Configuration</th>
554
554
<th>Checkpoint</th>
555
555
</tr>
@@ -573,7 +573,7 @@ The applied quantization compression algorithms are divided into two broad categ
573
573
</tr>
574
574
<tr>
575
575
<td align="left">Inception V3</td>
576
- <td align="left">• QAT: INT8 (per-tensor symmetric for weights, per-tensor asymmetric half-range for activations), Sparsity: 61% (RB)</td>
576
+ <td align="left">• QAT: INT8 (per-tensor symmetric for weights, per-tensor asymmetric half-range for activations)<br>• Sparsity: 61% (RB)</td>
577
577
<td>ImageNet</td>
578
578
<td>77.52 (0.39)</td>
579
579
<td><a href="../examples/tensorflow/classification/configs/sparsity_quantization/inception_v3_imagenet_rb_sparsity_int8.json">Config</a></td>
@@ -605,7 +605,7 @@ The applied quantization compression algorithms are divided into two broad categ
605
605
</tr>
606
606
<tr>
607
607
<td align="left">MobileNet V2</td>
608
- <td align="left">• QAT: INT8 (per-tensor symmetric for weights, per-tensor asymmetric half-range for activations), Sparsity: 52% (RB)</td>
608
+ <td align="left">• QAT: INT8 (per-tensor symmetric for weights, per-tensor asymmetric half-range for activations)<br>• Sparsity: 52% (RB)</td>
609
609
<td>ImageNet</td>
610
610
<td>70.94 (0.91)</td>
611
611
<td><a href="../examples/tensorflow/classification/configs/sparsity_quantization/mobilenet_v2_imagenet_rb_sparsity_int8.json">Config</a></td>
@@ -645,7 +645,7 @@ The applied quantization compression algorithms are divided into two broad categ
645
645
</tr>
646
646
<tr>
647
647
<td align="left">MobileNet V3 (Large)</td>
648
- <td align="left">• QAT: INT8 (per-channel symmetric for weights, per-tensor asymmetric half-range for activations)<br / >• Sparsity: 42% (RB)</td>
648
+ <td align="left">• QAT: INT8 (per-channel symmetric for weights, per-tensor asymmetric half-range for activations)<br>• Sparsity: 42% (RB)</td>
649
649
<td>ImageNet</td>
650
650
<td>75.24 (0.56)</td>
651
651
<td><a href="../examples/tensorflow/classification/configs/sparsity_quantization/mobilenet_v3_large_imagenet_rb_sparsity_int8.json">Config</a></td>
@@ -669,7 +669,7 @@ The applied quantization compression algorithms are divided into two broad categ
669
669
</tr>
670
670
<tr>
671
671
<td align="left">MobileNet V3 (Small)</td>
672
- <td align="left">• QAT: INT8 (per-channel symmetric for weights, per-tensor asymmetric half-range for activations)<br / >• Sparsity: 42% (Magnitude)</td>
672
+ <td align="left">• QAT: INT8 (per-channel symmetric for weights, per-tensor asymmetric half-range for activations)<br>• Sparsity: 42% (Magnitude)</td>
673
673
<td>ImageNet</td>
674
674
<td>67.44 (0.94)</td>
675
675
<td><a href="../examples/tensorflow/classification/configs/sparsity_quantization/mobilenet_v3_small_imagenet_rb_sparsity_int8.json">Config</a></td>
@@ -693,7 +693,7 @@ The applied quantization compression algorithms are divided into two broad categ
693
693
</tr>
694
694
<tr>
695
695
<td align="left">ResNet-50</td>
696
- <td align="left">• QAT: INT8 (per-tensor symmetric for weights, per-tensor asymmetric half-range for activations)<br / >• Sparsity: 65% (RB)</td>
696
+ <td align="left">• QAT: INT8 (per-tensor symmetric for weights, per-tensor asymmetric half-range for activations)<br>• Sparsity: 65% (RB)</td>
697
697
<td>ImageNet</td>
698
698
<td>74.36 (0.69)</td>
699
699
<td><a href="../examples/tensorflow/classification/configs/sparsity_quantization/resnet50_imagenet_rb_sparsity_int8.json">Config</a></td>
@@ -717,15 +717,15 @@ The applied quantization compression algorithms are divided into two broad categ
717
717
</tr>
718
718
<tr>
719
719
<td align="left">ResNet-50</td>
720
- <td align="left">• QAT: INT8 (per-tensor symmetric for weights, per-tensor asymmetric half-range for activations)<br / >• Filter pruning: 40%, geometric median criterion</td>
720
+ <td align="left">• QAT: INT8 (per-tensor symmetric for weights, per-tensor asymmetric half-range for activations)<br>• Filter pruning: 40%, geometric median criterion</td>
721
721
<td>ImageNet</td>
722
722
<td>75.09 (-0.04)</td>
723
723
<td><a href="../examples/tensorflow/classification/configs/pruning_quantization/resnet50_imagenet_pruning_geometric_median_int8.json">Config</a></td>
724
724
<td><a href="https://storage.openvinotoolkit.org/repositories/nncf/models/develop/tensorflow/resnet50_imagenet_pruning_geometric_median_int8.tar.gz">Download</a></td>
725
725
</tr>
726
726
<tr>
727
727
<td align="left">ResNet50</td>
728
- <td align="left">• Accuracy-aware compressed training<br / >• Sparsity: 65% (Magnitude)</td>
728
+ <td align="left">• Accuracy-aware compressed training<br>• Sparsity: 65% (Magnitude)</td>
729
729
<td>ImageNet</td>
730
730
<td>74.37 (0.67)</td>
731
731
<td><a href="../examples/tensorflow/classification/configs/sparsity/resnet50_imagenet_magnitude_sparsity_accuracy_aware.json">Config</a></td>
@@ -742,7 +742,7 @@ The applied quantization compression algorithms are divided into two broad categ
742
742
<th>Model</th>
743
743
<th>Compression algorithm</th>
744
744
<th>Dataset</th>
745
- <th>mAP  (<em>drop</em>)  %</th>
745
+ <th>mAP (<em>drop</em>) %</th>
746
746
<th>Configuration</th>
747
747
<th>Checkpoint</th>
748
748
</tr>
@@ -782,7 +782,7 @@ The applied quantization compression algorithms are divided into two broad categ
782
782
</tr>
783
783
<tr>
784
784
<td align="left">RetinaNet</td>
785
- <td align="left">• QAT: INT8 (per-tensor symmetric for weights, per-tensor asymmetric half-range for activations)<br / >• Filter pruning: 40%</td>
785
+ <td align="left">• QAT: INT8 (per-tensor symmetric for weights, per-tensor asymmetric half-range for activations)<br>• Filter pruning: 40%</td>
786
786
<td>COCO 2017</td>
787
787
<td>32.67 (0.76)</td>
788
788
<td><a href="../examples/tensorflow/object_detection/configs/pruning_quantization/retinanet_coco_pruning_geometric_median_int8.json">Config</a></td>
@@ -823,7 +823,7 @@ The applied quantization compression algorithms are divided into two broad categ
823
823
<th>Model</th>
824
824
<th>Compression algorithm</th>
825
825
<th>Dataset</th>
826
- <th>mAP  (<em>drop</em>)  %</th>
826
+ <th>mAP (<em>drop</em>) %</th>
827
827
<th>Configuration</th>
828
828
<th>Checkpoint</th>
829
829
</tr>
@@ -833,23 +833,23 @@ The applied quantization compression algorithms are divided into two broad categ
833
833
<td align="left">Mask‑R‑CNN</td>
834
834
<td align="left">-</td>
835
835
<td>COCO 2017</td>
836
- <td>bbox: 37.33 segm: 33.56</td>
836
+ <td>bbox: 37.33<br> segm: 33.56</td>
837
837
<td><a href="../examples/tensorflow/segmentation/configs/mask_rcnn_coco.json">Config</a></td>
838
838
<td><a href="https://storage.openvinotoolkit.org/repositories/nncf/models/develop/tensorflow/mask_rcnn_coco.tar.gz">Download</a></td>
839
839
</tr>
840
840
<tr>
841
841
<td align="left">Mask‑R‑CNN</td>
842
842
<td align="left">• QAT: INT8 (per-tensor symmetric for weights, per-tensor asymmetric half-range for activations)</td>
843
843
<td>COCO 2017</td>
844
- <td>bbox: 37.19 (0.14) segm: 33.54 (0.02)</td>
844
+ <td>bbox: 37.19 (0.14)<br> segm: 33.54 (0.02)</td>
845
845
<td><a href="../examples/tensorflow/segmentation/configs/quantization/mask_rcnn_coco_int8.json">Config</a></td>
846
846
<td><a href="https://storage.openvinotoolkit.org/repositories/nncf/models/develop/tensorflow/mask_rcnn_coco_int8.tar.gz">Download</a></td>
847
847
</tr>
848
848
<tr>
849
849
<td align="left">Mask‑R‑CNN</td>
850
850
<td align="left">• Sparsity: 50% (Magnitude)</td>
851
851
<td>COCO 2017</td>
852
- <td>bbox: 36.94 (0.39) segm: 33.23 (0.33)</td>
852
+ <td>bbox: 36.94 (0.39)<br> segm: 33.23 (0.33)</td>
853
853
<td><a href="../examples/tensorflow/segmentation/configs/sparsity/mask_rcnn_coco_magnitude_sparsity.json">Config</a></td>
854
854
<td><a href="https://storage.openvinotoolkit.org/repositories/nncf/models/develop/tensorflow/mask_rcnn_coco_magnitude_sparsity.tar.gz">Download</a></td>
855
855
</tr>
@@ -866,7 +866,7 @@ The applied quantization compression algorithms are divided into two broad categ
866
866
<th>ONNX Model</th>
867
867
<th>Compression algorithm</th>
868
868
<th>Dataset</th>
869
- <th>Accuracy  (<em>drop</em>)  %</th>
869
+ <th>Accuracy (<em>drop</em>) %</th>
870
870
</tr>
871
871
</thead >
872
872
<tbody align =" center " >
@@ -923,7 +923,7 @@ The applied quantization compression algorithms are divided into two broad categ
923
923
<th>ONNX Model</th>
924
924
<th>Compression algorithm</th>
925
925
<th>Dataset</th>
926
- <th>mAP  (<em>drop</em>)  %</th>
926
+ <th>mAP (<em>drop</em>) %</th>
927
927
</tr>
928
928
</thead >
929
929
<tbody align =" center " >
0 commit comments