-
Notifications
You must be signed in to change notification settings - Fork 79
/
Copy pathdynarray.ml
790 lines (680 loc) · 24.9 KB
/
dynarray.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Gabriel Scherer, projet Partout, INRIA Paris-Saclay *)
(* *)
(* Copyright 2022 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
type 'a t = {
mutable length : int;
mutable arr : 'a slot array;
}
(* {2 The type ['a t]}
A dynamic array is represented using a backing array [arr] and
a [length]. It behaves as an array of size [length] -- the indices
from [0] to [length - 1] included contain user-provided values and
can be [get] and [set] -- but the length may also change in the
future by adding or removing elements at the end.
We use the following concepts;
- capacity: the length of the backing array:
[Array.length arr]
- live space: the portion of the backing array with
indices from [0] to [length - 1] included.
- empty space: the portion of the backing array
from [length] to the end of the backing array.
{2 The type ['a slot]}
We should not keep a user-provided value in the empty space, as
this could extend its lifetime and may result in memory leaks of
arbitrary size. Functions that remove elements from the dynamic
array, such as [pop_last] or [truncate], must really erase the
element from the backing array.
This constraint makes it difficult to represent an dynamic array of
elements of type ['a] with a backing array of type ['a array]: what
valid value of type ['a] would we use in the empty space? Typical
choices include:
- accepting scenarios where we actually leak user-provided values
(but this can blowup memory usage in some cases, and is hard to debug)
- requiring a "dummy" value at creation of the dynamic array
or in the parts of the API that grow the empty space
(but users find this very inconvenient)
- using arcane Obj.magic tricks
(but experts don't agree on which tricks are safe to use and/or
should be used here)
- using a backing array of ['a option] values, using [None]
in the empty space
(but this gives a noticeably less efficient memory representation)
In the present implementation, we use the ['a option] approach,
with a twist. With ['a option], calling [set a i x] must reallocate
a new [Some x] block:
{[
let set a i x =
if i < 0 || i >= a.length then error "out of bounds";
a.arr.(i) <- Some x
]}
Instead we use the type ['a slot] below,
which behaves as an option whose [Some] constructor
(called [Elem] here) has a _mutable_ argument.
*)
and 'a slot =
| Empty
| Elem of { mutable v: 'a }
(*
This gives an allocation-free implementation of [set] that calls
[Array.get] (instead of [Array.set]) on the backing array and then
mutates the [v] parameter. In pseudo-code:
{[
let set a i x =
if i < 0 || i >= a.length then error "out of bounds";
match a.arr.(i) with
| Empty -> error "invalid state: missing element"
| Elem s -> s.v <- x
]}
With this approach, accessing an element still pays the cost of an
extra indirection (compared to approaches that do not box elements
in the backing array), but only operations that add new elements at
the end of the array pay extra allocations.
There are some situations where ['a option] is better: it makes
[pop_last_opt] more efficient as the underlying option can be
returned directly, and it also lets us use [Array.blit] to
implement [append]. We believe that optimizing [get] and [set] is
more important for dynamic arrays.
{2 Invariants and valid states}
We enforce the invariant that [length >= 0] at all times.
we rely on this invariant for optimization.
The following conditions define what we call a "valid" dynarray:
- valid length: [length <= Array.length arr]
- no missing element in the live space:
forall i, [0 <= i < length] implies [arr.(i) <> Empty]
- no element in the empty space:
forall i, [length <= i < Array.length arr] implies [arr.(i) = Empty]
Unfortunately, we cannot easily enforce validity as an invariant in
presence of concurrent updates. We can thus observe dynarrays in
"invalid states". Our implementation may raise exceptions or return
incorrect results on observing invalid states, but of course it
must preserve memory safety.
*)
module Error = struct
let[@inline never] index_out_of_bounds f ~i ~length =
if length = 0 then
Printf.ksprintf invalid_arg
"Dynarray.%s: index %d out of bounds (empty dynarray)"
f i
else
Printf.ksprintf invalid_arg
"Dynarray.%s: index %d out of bounds (0..%d)"
f i (length - 1)
let[@inline never] negative_length_requested f n =
Printf.ksprintf invalid_arg
"Dynarray.%s: negative length %d requested"
f n
let[@inline never] negative_capacity_requested f n =
Printf.ksprintf invalid_arg
"Dynarray.%s: negative capacity %d requested"
f n
let[@inline never] requested_length_out_of_bounds f requested_length =
Printf.ksprintf invalid_arg
"Dynarray.%s: cannot grow to requested length %d (max_array_length is %d)"
f requested_length Sys.max_array_length
(* When observing an invalid state ([missing_element],
[invalid_length]), we do not give the name of the calling function
in the error message, as the error is related to invalid operations
performed earlier, and not to the callsite of the function
itself. *)
let invalid_state_description =
"Invalid dynarray (unsynchronized concurrent length change)"
let[@inline never] missing_element ~i ~length =
Printf.ksprintf invalid_arg
"%s: missing element at position %d < length %d"
invalid_state_description
i length
let[@inline never] invalid_length ~length ~capacity =
Printf.ksprintf invalid_arg
"%s: length %d > capacity %d"
invalid_state_description
length capacity
let[@inline never] length_change_during_iteration f ~expected ~observed =
Printf.ksprintf invalid_arg
"Dynarray.%s: a length change from %d to %d occurred during iteration"
f expected observed
(* When an [Empty] element is observed unexpectedly at index [i],
it may be either an out-of-bounds access or an invalid-state situation
depending on whether [i <= length]. *)
let[@inline never] unexpected_empty_element f ~i ~length =
if i < length then
missing_element ~i ~length
else
index_out_of_bounds f ~i ~length
let[@inline never] empty_dynarray f =
Printf.ksprintf invalid_arg
"Dynarray.%s: empty array" f
end
(* Detecting iterator invalidation.
See {!iter} below for a detailed usage example.
*)
let check_same_length f a ~length =
let length_a = a.length in
if length <> length_a then
Error.length_change_during_iteration f
~expected:length ~observed:length_a
(** Careful unsafe access. *)
(* Postcondition on non-exceptional return:
[length <= Array.length arr] *)
let[@inline always] check_valid_length length arr =
let capacity = Array.length arr in
if length > capacity then
Error.invalid_length ~length ~capacity
(* Precondition: [0 <= i < length <= Array.length arr]
This precondition is typically guaranteed by knowing
[0 <= i < length] and calling [check_valid_length length arr].*)
let[@inline always] unsafe_get arr ~i ~length =
match Array.unsafe_get arr i with
| Empty -> Error.missing_element ~i ~length
| Elem {v} -> v
(** {1:dynarrays Dynamic arrays} *)
let create () = {
length = 0;
arr = [| |];
}
let make n x =
if n < 0 then Error.negative_length_requested "make" n;
{
length = n;
arr = Array.init n (fun _ -> Elem {v = x});
}
let init n f =
if n < 0 then Error.negative_length_requested "init" n;
{
length = n;
arr = Array.init n (fun i -> Elem {v = f i});
}
let get a i =
(* This implementation will propagate an [Invalid_argument] exception
from array lookup if the index is out of the backing array,
instead of using our own [Error.index_out_of_bounds]. This is
allowed by our specification, and more efficient -- no need to
check that [length a <= capacity a] in the fast path. *)
match a.arr.(i) with
| Elem s -> s.v
| Empty ->
Error.unexpected_empty_element "get" ~i ~length:a.length
let set a i x =
(* See {!get} comment on the use of checked array
access without our own bound checking. *)
match a.arr.(i) with
| Elem s -> s.v <- x
| Empty ->
Error.unexpected_empty_element "set" ~i ~length:a.length
let length a = a.length
let is_empty a = (a.length = 0)
let copy {length; arr} =
check_valid_length length arr;
(* use [length] as the new capacity to make
this an O(length) operation. *)
{
length;
arr = Array.init length (fun i ->
let v = unsafe_get arr ~i ~length in
Elem {v}
);
}
let get_last a =
let {arr; length} = a in
check_valid_length length arr;
(* We know [length <= capacity a]. *)
if length = 0 then Error.empty_dynarray "get_last";
(* We know [length > 0]. *)
unsafe_get arr ~i:(length - 1) ~length
let find_last a =
let {arr; length} = a in
check_valid_length length arr;
(* We know [length <= capacity a]. *)
if length = 0 then None
else
(* We know [length > 0]. *)
Some (unsafe_get arr ~i:(length - 1) ~length)
(** {1:removing Removing elements} *)
let pop_last a =
let {arr; length} = a in
check_valid_length length arr;
(* We know [length <= capacity a]. *)
if length = 0 then raise Not_found;
let last = length - 1 in
(* We know [length > 0] so [last >= 0]. *)
match Array.unsafe_get arr last with
| Empty ->
Error.missing_element ~i:last ~length
| Elem s ->
Array.unsafe_set arr last Empty;
a.length <- last;
s.v
let pop_last_opt a =
match pop_last a with
| exception Not_found -> None
| x -> Some x
let remove_last a =
let last = length a - 1 in
if last >= 0 then begin
a.length <- last;
a.arr.(last) <- Empty;
end
let truncate a n =
if n < 0 then Error.negative_length_requested "truncate" n;
let {arr; length} = a in
if length <= n then ()
else begin
a.length <- n;
Array.fill arr n (length - n) Empty;
end
let clear a = truncate a 0
(** {1:capacity Backing array and capacity} *)
let capacity a = Array.length a.arr
let next_capacity n =
let n' =
(* For large values of n, we use 1.5 as our growth factor.
For smaller values of n, we grow more aggressively to avoid
reallocating too much when accumulating elements into an empty
array.
The constants "512 words" and "8 words" below are taken from
https://github.com/facebook/folly/blob/
c06c0f41d91daf1a6a5f3fc1cd465302ac260459/folly/FBVector.h#L1128-L1157
*)
if n <= 512 then n * 2
else n + n / 2
in
(* jump directly from 0 to 8 *)
min (max 8 n') Sys.max_array_length
let ensure_capacity a capacity_request =
let arr = a.arr in
let cur_capacity = Array.length arr in
if capacity_request < 0 then
Error.negative_capacity_requested "ensure_capacity" capacity_request
else if cur_capacity >= capacity_request then
(* This is the fast path, the code up to here must do as little as
possible. (This is why we don't use [let {arr; length} = a] as
usual, the length is not needed in the fast path.)*)
()
else begin
if capacity_request > Sys.max_array_length then
Error.requested_length_out_of_bounds "ensure_capacity" capacity_request;
let new_capacity =
(* We use either the next exponential-growth strategy,
or the requested strategy, whichever is bigger.
Compared to only using the exponential-growth strategy, this
lets us use less memory by avoiding any overshoot whenever
the capacity request is noticeably larger than the current
capacity.
Compared to only using the requested capacity, this avoids
losing the amortized guarantee: we allocated "exponentially
or more", so the amortization holds. In particular, notice
that repeated calls to [ensure_capacity a (length a + 1)]
will have amortized-linear rather than quadratic complexity.
*)
max (next_capacity cur_capacity) capacity_request in
let new_arr = Array.make new_capacity Empty in
Array.blit arr 0 new_arr 0 a.length;
a.arr <- new_arr;
(* postcondition: *)
assert (0 <= capacity_request);
assert (capacity_request <= Array.length new_arr);
end
let ensure_extra_capacity a extra_capacity_request =
ensure_capacity a (length a + extra_capacity_request)
let fit_capacity a =
if capacity a = a.length
then ()
else a.arr <- Array.sub a.arr 0 a.length
let set_capacity a n =
if n < 0 then
Error.negative_capacity_requested "set_capacity" n;
let arr = a.arr in
let cur_capacity = Array.length arr in
if n < cur_capacity then begin
a.length <- min a.length n;
a.arr <- Array.sub arr 0 n;
end
else if n > cur_capacity then begin
let new_arr = Array.make n Empty in
Array.blit arr 0 new_arr 0 a.length;
a.arr <- new_arr;
end
let reset a =
a.length <- 0;
a.arr <- [||]
(** {1:adding Adding elements} *)
(* We chose an implementation of [add_last a x] that behaves correctly
in presence of asynchronous / re-entrant code execution around
allocations and poll points: if another thread or a callback gets
executed on allocation, we add the element at the new end of the
dynamic array.
(We do not give the same guarantees in presence of concurrent
parallel updates, which are much more expensive to protect
against.)
*)
(* [add_last_if_room a elem] only writes the slot if there is room, and
returns [false] otherwise. *)
let[@inline] add_last_if_room a elem =
let {arr; length} = a in
(* we know [0 <= length] *)
if length >= Array.length arr then false
else begin
(* we know [0 <= length < Array.length arr] *)
a.length <- length + 1;
Array.unsafe_set arr length elem;
true
end
let add_last a x =
let elem = Elem {v = x} in
if add_last_if_room a elem then ()
else begin
(* slow path *)
let rec grow_and_add a elem =
ensure_extra_capacity a 1;
if not (add_last_if_room a elem)
then grow_and_add a elem
in grow_and_add a elem
end
let rec append_list a li =
match li with
| [] -> ()
| x :: xs -> add_last a x; append_list a xs
let append_iter a iter b =
iter (fun x -> add_last a x) b
let append_seq a seq =
Seq.iter (fun x -> add_last a x) seq
(* append_array: same [..._if_room] and loop logic as [add_last]. *)
let append_array_if_room a b =
let {arr; length = length_a} = a in
let length_b = Array.length b in
if length_a + length_b > Array.length arr then false
else begin
a.length <- length_a + length_b;
(* Note: we intentionally update the length *before* filling the
elements. This "reserve before fill" approach provides better
behavior than "fill then notify" in presence of reentrant
modifications (which may occur below, on a poll point in the loop or
the [Elem] allocation):
- If some code asynchronously adds new elements after this
length update, they will go after the space we just reserved,
and in particular no addition will be lost. If instead we
updated the length after the loop, any asynchronous addition
during the loop could be erased or erase one of our additions,
silently, without warning the user.
- If some code asynchronously iterates on the dynarray, or
removes elements, or otherwise tries to access the
reserved-but-not-yet-filled space, it will get a clean "missing
element" error. This is worse than with the fill-then-notify
approach where the new elements would only become visible
(to iterators, for removal, etc.) alltogether at the end of
loop.
To summarise, "reserve before fill" is better on add-add races,
and "fill then notify" is better on add-remove or add-iterate
races. But the key difference is the failure mode:
reserve-before fails on add-remove or add-iterate races with
a clean error, while notify-after fails on add-add races with
silently disappearing data. *)
for i = 0 to length_b - 1 do
let x = Array.unsafe_get b i in
Array.unsafe_set arr (length_a + i) (Elem {v = x})
done;
true
end
let append_array a b =
if append_array_if_room a b then ()
else begin
(* slow path *)
let rec grow_and_append a b =
ensure_extra_capacity a (Array.length b);
if not (append_array_if_room a b)
then grow_and_append a b
in grow_and_append a b end
(* append: same [..._if_room] and loop logic as [add_last],
same reserve-before-fill logic as [append_array]. *)
(* It is a programming error to mutate the length of [b] during a call
to [append a b]. To detect this mistake we keep track of the length
of [b] throughout the computation and check it that does not
change.
*)
let append_if_room a b ~length_b =
let {arr = arr_a; length = length_a} = a in
if length_a + length_b > Array.length arr_a then false
else begin
a.length <- length_a + length_b;
let arr_b = b.arr in
check_valid_length length_b arr_b;
for i = 0 to length_b - 1 do
let x = unsafe_get arr_b ~i ~length:length_b in
Array.unsafe_set arr_a (length_a + i) (Elem {v = x})
done;
check_same_length "append" b ~length:length_b;
true
end
let append a b =
let length_b = length b in
if append_if_room a b ~length_b then ()
else begin
(* slow path *)
let rec grow_and_append a b ~length_b =
ensure_extra_capacity a length_b;
(* Eliding the [check_same_length] call below would be wrong in
the case where [a] and [b] are aliases of each other, we
would get into an infinite loop instead of failing.
We could push the call to [append_if_room] itself, but we
prefer to keep it in the slow path. *)
check_same_length "append" b ~length:length_b;
if not (append_if_room a b ~length_b)
then grow_and_append a b ~length_b
in grow_and_append a b ~length_b
end
(** {1:iteration Iteration} *)
(* The implementation choice that we made for iterators is the one
that maximizes efficiency by avoiding repeated bound checking: we
check the length of the dynamic array once at the beginning, and
then only operate on that portion of the dynarray, ignoring
elements added in the meantime.
The specification states that it is a programming error to mutate
the length of the array during iteration. We check for this and
raise an error on size change.
Note that we may still miss some transient state changes that cancel
each other and leave the length unchanged at the next check.
*)
let iter_ f k a =
let {arr; length} = a in
(* [check_valid_length length arr] is used for memory safety, it
guarantees that the backing array has capacity at least [length],
allowing unsafe array access.
[check_same_length] is used for correctness, it lets the function
fail more often if we discover the programming error of mutating
the length during iteration.
We could, naively, call [check_same_length] at each iteration of
the loop (before or after, or both). However, notice that this is
not necessary to detect the removal of elements from [a]: if
elements have been removed by the time the [for] loop reaches
them, then [unsafe_get] will itself fail with an [Invalid_argument]
exception. We only need to detect the addition of new elements to
[a] during iteration, and for this it is enough to call
[check_same_length] once at the end.
Calling [check_same_length] more often could catch more
programming errors, but the only errors that we miss with this
optimization are those that keep the array size constant --
additions and deletions that cancel each other. We consider this
an acceptable tradeoff.
*)
check_valid_length length arr;
for i = 0 to length - 1 do
k (unsafe_get arr ~i ~length);
done;
check_same_length f a ~length
let iter k a =
iter_ "iter" k a
let iteri k a =
let {arr; length} = a in
check_valid_length length arr;
for i = 0 to length - 1 do
k i (unsafe_get arr ~i ~length);
done;
check_same_length "iteri" a ~length
let map f a =
let {arr; length} = a in
check_valid_length length arr;
let res = {
length;
arr = Array.init length (fun i ->
Elem {v = f (unsafe_get arr ~i ~length)});
} in
check_same_length "map" a ~length;
res
let mapi f a =
let {arr; length} = a in
check_valid_length length arr;
let res = {
length;
arr = Array.init length (fun i ->
Elem {v = f i (unsafe_get arr ~i ~length)});
} in
check_same_length "mapi" a ~length;
res
let fold_left f acc a =
let {arr; length} = a in
check_valid_length length arr;
let r = ref acc in
for i = 0 to length - 1 do
let v = unsafe_get arr ~i ~length in
r := f !r v;
done;
check_same_length "fold_left" a ~length;
!r
let fold_right f a acc =
let {arr; length} = a in
check_valid_length length arr;
let r = ref acc in
for i = length - 1 downto 0 do
let v = unsafe_get arr ~i ~length in
r := f v !r;
done;
check_same_length "fold_right" a ~length;
!r
let exists p a =
let {arr; length} = a in
check_valid_length length arr;
let rec loop p arr i length =
if i = length then false
else
p (unsafe_get arr ~i ~length)
|| loop p arr (i + 1) length
in
let res = loop p arr 0 length in
check_same_length "exists" a ~length;
res
let for_all p a =
let {arr; length} = a in
check_valid_length length arr;
let rec loop p arr i length =
if i = length then true
else
p (unsafe_get arr ~i ~length)
&& loop p arr (i + 1) length
in
let res = loop p arr 0 length in
check_same_length "for_all" a ~length;
res
let filter f a =
let b = create () in
iter_ "filter" (fun x -> if f x then add_last b x) a;
b
let filter_map f a =
let b = create () in
iter_ "filter_map" (fun x ->
match f x with
| None -> ()
| Some y -> add_last b y
) a;
b
(** {1:conversions Conversions to other data structures} *)
(* The eager [to_*] conversion functions behave similarly to iterators
in presence of updates during computation. The [*_reentrant]
functions obey their more permissive specification, which tolerates
any concurrent update. *)
let of_array a =
let length = Array.length a in
{
length;
arr = Array.init length (fun i -> Elem {v = Array.unsafe_get a i});
}
let to_array a =
let {arr; length} = a in
check_valid_length length arr;
let res = Array.init length (fun i ->
unsafe_get arr ~i ~length)
in
check_same_length "to_array" a ~length;
res
let of_list li =
let a = create () in
List.iter (fun x -> add_last a x) li;
a
let to_list a =
let {arr; length} = a in
check_valid_length length arr;
let l = ref [] in
for i = length - 1 downto 0 do
l := unsafe_get arr ~i ~length :: !l
done;
check_same_length "to_list" a ~length;
!l
let of_seq seq =
let init = create() in
append_seq init seq;
init
let to_seq a =
let {arr; length} = a in
check_valid_length length arr;
let rec aux i = fun () ->
check_same_length "to_seq" a ~length;
if i >= length then Seq.Nil
else begin
let v = unsafe_get arr ~i ~length in
Seq.Cons (v, aux (i + 1))
end
in
aux 0
let to_seq_reentrant a =
let rec aux i = fun () ->
if i >= length a then Seq.Nil
else begin
let v = get a i in
Seq.Cons (v, aux (i + 1))
end
in
aux 0
let to_seq_rev a =
let {arr; length} = a in
check_valid_length length arr;
let rec aux i = fun () ->
check_same_length "to_seq_rev" a ~length;
if i < 0 then Seq.Nil
else begin
let v = unsafe_get arr ~i ~length in
Seq.Cons (v, aux (i - 1))
end
in
aux (length - 1)
let to_seq_rev_reentrant a =
let rec aux i = fun () ->
if i < 0 then Seq.Nil
else if i >= length a then
(* If some elements have been removed in the meantime, we skip
those elements and continue with the new end of the array. *)
aux (length a - 1) ()
else begin
let v = get a i in
Seq.Cons (v, aux (i - 1))
end
in
aux (length a - 1)