-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathinference.py
339 lines (282 loc) · 13.3 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import argparse
import pickle
import numpy as np
import pandas as pd
import torch
from torch.utils.data import DataLoader
import torchio
from dataset import MRIDataset
from apex import amp
from networks import resnet_3d_pre_post
from networks.models import MultiSequenceChannels
from tqdm import tqdm
from utilities.utils import boolean_string
import random
from sklearn.metrics import roc_auc_score
def tta_compose(matrix: torch.Tensor, torchio_compose: torchio.transforms.Compose):
"""
Performs test-time augmentation on a matrix
This function handles multiple batches, so that
If `matrix` is ndim=5, then it is expected to have
shape {B, C, X, Y, Z} where:
B - batch; C - channel; X, Y, Z - volume dims.
If ndim=4, then it should have {C, X, Y, Z} shape.
It *always* returns a tensor of shape {B, C, X, Y, Z}, i.e.
ready to be inputted into the network
"""
transformed_tensors = []
if matrix.ndim == 5:
for datum in matrix:
datum_trans = torchio_compose(datum)
transformed_tensors.append(datum_trans)
elif matrix.ndim == 4:
datum_trans = torchio_compose(matrix)
transformed_tensors.append(datum_trans)
else:
raise NotImplementedError(f"Input ndim={matrix.ndim} must be 4 or 5")
matrix_trans = torch.stack(transformed_tensors)
return matrix_trans
def interim_scores(preds, indices, labels):
# Single model prediction
if type(preds) == list:
preds = {k[0]: list(v[0]) for k, v in zip(indices, preds)}
if type(labels) == list:
labels = {k[0]: list(v[0]) for k, v in zip(indices, labels)}
# Convenience arrays for calculations
labels = np.array(list(labels.values()))
logits = np.array(list(preds.values()))
indices = [x[0] for x in indices]
labels_malignant = np.append(labels[:, 1], labels[:, 3])
logits_malignant = np.append(logits[:, 1], logits[:, 3])
# Compute AUC ROC
try:
auroc = roc_auc_score(labels_malignant, logits_malignant)
except:
auroc = 0.0
return auroc
def main(base_parameters):
print("Inference")
torch.manual_seed(base_parameters.seed)
torch.cuda.manual_seed(base_parameters.seed)
np.random.seed(base_parameters.seed)
# Set up model, optimizer
if base_parameters.architecture == 'multi_channel':
if base_parameters.age_as_channel:
in_channels = 4
else:
in_channels = 3
model = MultiSequenceChannels(
base_parameters,
in_channels=in_channels,
inplanes=base_parameters.inplanes,
return_hidden=base_parameters.save_last_hidden
)
print("Loaded multi channel")
else:
model = resnet_3d_pre_post.MRIResNet3D_wls_right(
resnet_size=18,
groups=base_parameters.resnet_groups,
in_channels=1,
topk=base_parameters.topk,
return_h=base_parameters.save_last_hidden
).float()
model.to("cuda")
# Load weights
weights_path = base_parameters.weights
checkpoint = torch.load(weights_path)
#checkpoint_amp = torch.load(base_parameters.weightsAmp)
# if base_parameters.architecture == 'multi_channel':
# fixed_weights = {}
# for k, v in checkpoint['model'].items():
# fixed_weights[(k.replace("feature_extractor.", ""))] = checkpoint['model'][k]
# checkpoint['model'] = fixed_weights
# THIS IS FOR MODELS TRAINED WITH DDP / MULTIGPU
if base_parameters.trained_with_ddp:
print("Loading weights...")
fixed_weights = {}
for k, v in checkpoint['model'].items():
fixed_weights[(k.replace("module.", ""))] = checkpoint['model'][k]
checkpoint['model'] = fixed_weights
optimizer = torch.optim.Adam(model.parameters(), lr=base_parameters.lr, weight_decay=1e-4)
model, optimizer = amp.initialize(model, optimizer, opt_level=base_parameters.half_level, min_loss_scale=128)
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
if 'amp' in checkpoint:
amp.load_state_dict(checkpoint['amp'])
model.eval()
# Dataset
val_dataset = MRIDataset(
base_parameters,
base_parameters.subset
)
print("Loaded dataset of length:", len(val_dataset))
# Data loader
val_loader = DataLoader(
val_dataset,
batch_size=base_parameters.batch_size,
shuffle=False,
sampler=None,
num_workers=base_parameters.num_workers,
pin_memory=True,
drop_last=False
)
# Inference and collect outputs
all_preds = []
all_indices = []
all_labels = []
all_hidden = []
validation_predictions = dict()
validation_labels = val_dataset.get_labels()
# TTA information output
if base_parameters.tta_rounds > 0:
print("Selected TTA:")
print(f"*** ({base_parameters.tta_rounds} rounds)")
if base_parameters.tta_flip:
print("*** random horizontal flip")
print("*** random affine augmentations")
else:
print("No test-time augmentations will be performed.")
# Inference loop
interim_auroc = 0.0
pbar = tqdm(enumerate(val_loader), total=len(val_loader))
for i_batch, batch in pbar:
indices, raw_data_batch, label_batch, _ = batch
label_batch = label_batch.to("cuda")
pbar.set_description(f"Batch {i_batch} *** interim AUROC: {interim_auroc}")
with torch.no_grad():
# Prediction without augmentation
if base_parameters.save_last_hidden:
preds, h = model(raw_data_batch.to("cuda"), return_logits=base_parameters.return_logits)
else:
preds = model(raw_data_batch.to("cuda"), return_logits=base_parameters.return_logits)
# Test-time augmentations
# perform augmentation N times
# for each augmented volume generate predictions
# average N predictions
if base_parameters.tta_rounds > 0:
for round_i in range(base_parameters.tta_rounds):
pbar.set_description(f"Batch {i_batch} [TTA #{round_i+1}] *** interim AUROC: {interim_auroc}")
# Randomly choose whether to do horizontal flip
if base_parameters.tta_flip:
if random.random() > 0.5:
flip_probability=1.0
else:
flip_probability=0.0
else:
flip_probability=0.0
if base_parameters.tta_gamma:
if random.random() > 0.5:
gamma_probability=1.0
else:
gamma_probability=0.0
else:
gamma_probability=0.0
if base_parameters.tta_blur:
if random.random() > 0.5:
blur_probability=1.0
else:
blur_probability=0.0
else:
blur_probability=0.0
# Compose all TTA augmentations
torchio_compose = torchio.transforms.Compose([
torchio.transforms.RandomFlip(axes=2, flip_probability=flip_probability),
torchio.transforms.RandomAffine(
scales=base_parameters.tta_affine_scales,
degrees=base_parameters.tta_affine_degrees,
translation=base_parameters.tta_affine_translation,
p=0.5
),
torchio.transforms.RandomGamma(p=gamma_probability),
torchio.transforms.RandomBlur(p=blur_probability)
])
# Augment the volume
if base_parameters.architecture == 'multi_channel':
augmented_volume = tta_compose(raw_data_batch, torchio_compose)
else:
augmented_volume = tta_compose(raw_data_batch, torchio_compose)
# Generate predictions
preds_tta_ = model(
augmented_volume.to("cuda"),
return_logits=base_parameters.return_logits
)
# If horizontal flip was applied, flip predictions now
if flip_probability == 1.0:
preds_tta = torch.tensor([[preds_tta_[0][2], preds_tta_[0][3], preds_tta_[0][0], preds_tta_[0][1]]], device='cuda')
else:
preds_tta = preds_tta_
# Add to predictions
preds += preds_tta
preds /= (base_parameters.tta_rounds + 1)
for i in range(0, len(label_batch)):
validation_predictions[indices[i]] = preds[i].cpu().detach().numpy()
all_preds.append(preds.detach().cpu().numpy())
all_indices.append(indices)
all_labels.append(label_batch.detach().cpu().numpy())
if base_parameters.save_last_hidden:
all_hidden.append(h.detach().cpu().numpy())
interim_auroc = interim_scores(all_preds, all_indices, all_labels)
# Save to pickle
print(f"Saving to pickle: {base_parameters.output}")
output = {
"weights": weights_path,
"preds": validation_predictions,
"indices": all_indices,
"labels": validation_labels,
"hidden": all_hidden
}
with open(base_parameters.output, "wb") as f:
pickle.dump(output, f)
return
def get_args():
parser = argparse.ArgumentParser("MRI Inference")
parser.add_argument("-m", "--metadata", type=str, default="/blinded.pkl")
parser.add_argument("-d", "--datalist", type=str, default="/blinded.pkl")
parser.add_argument("-s", "--subgroup", type=str, default="/blinded.pkl")
parser.add_argument("-o", "--output", type=str, required=True, help='Path to pkl file where outputs should be saved')
parser.add_argument("-w", "--weights", type=str, required=True, help='Path to weights')
parser.add_argument("--subset", type=str, default='validation')
parser.add_argument("--save_last_hidden", type=boolean_string, default=False, help='Save last hidden representation')
parser.add_argument("--validation_fraction", type=float, default=1.00)
parser.add_argument("--architecture", type=str, default="3d_resnet18")
parser.add_argument("--resnet_groups", type=int, default=16)
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--num_workers", type=int, default=19)
parser.add_argument("--input_type", type=str, default="sub_t1c2")
parser.add_argument("--input_size", type=str, default="normal")
parser.add_argument("--label_type", type=str, default="cancer")
parser.add_argument("--aug_policy", type=str, default="none")
parser.add_argument("--cutout", type=boolean_string, default=False)
parser.add_argument("--age_as_channel", type=boolean_string, default=False)
parser.add_argument("--lr", type=float, default=1e-5)
parser.add_argument("--subtraction_clipping", type=boolean_string, default=False)
parser.add_argument("--mixup", type=boolean_string, default=False)
parser.add_argument("--isotropic", type=boolean_string, default=False)
parser.add_argument("--inplanes", type=int, default=64)
parser.add_argument("--topk", type=int, default=10)
parser.add_argument("--seed", type=int, default=420)
parser.add_argument("--half_level", type=str, default='O2', choices={'O1', 'O2'})
parser.add_argument("--trained_with_ddp", type=boolean_string, default=False)
parser.add_argument("--tcia_duke", type=bool, default=False, help='Use this flag when using Duke data')
parser.add_argument("--tcga_brca", type=bool, default=False, help='Use this flag when using TCGA data OR UJ data')
# test-time augmentations
parser.add_argument("--tta_rounds", type=int, default=0, help='How many rounds of TTA per image')
parser.add_argument("--tta_flip", type=boolean_string, default=False)
parser.add_argument("--tta_gamma", type=boolean_string, default=False)
parser.add_argument("--tta_blur", type=boolean_string, default=False)
parser.add_argument("--tta_affine_scales", type=float, default=0.1)
parser.add_argument("--tta_affine_degrees", type=int, default=10)
parser.add_argument("--tta_affine_translation", type=int, default=10)
# deprecated tta
parser.add_argument("--tta_zoomout", type=boolean_string, default=False)
parser.add_argument("--tta_noise", type=boolean_string, default=False)
parser.add_argument("--tta_ghosting", type=boolean_string, default=False)
parser.add_argument("--return_logits", type=boolean_string, default=False)
args = parser.parse_args()
# Load data for subgroup statistics
subgroup_df = pd.read_pickle(args.subgroup)
args.subgroup_df = subgroup_df
return args
if __name__ == "__main__":
parameters = get_args()
main(parameters)