-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathindex.Rmd
85 lines (51 loc) · 3.44 KB
/
index.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
title: ""
output:
html_document:
theme: flatly
includes:
in_header: header.html
---
```{r, include=FALSE}
htmltools::tagList(rmarkdown::html_dependency_font_awesome())
```
<br>
<div class=xlfont>
<mark>The course website for STA130 Winter 2019 can be found on [Quercus](https://q.utoronto.ca) </mark>
</div>
<br>
<br>
<br>
## <span class="glyphicon glyphicon-chevron-right" aria-hidden="true"></span> Midterm Test Information
Midterm test information is available [here](Fall2018/term_test_Fall2018.html).
## <span class="glyphicon glyphicon-chevron-right" aria-hidden="true"></span> TA Office Hours
TA office hours will be held in SS623B (Sidney Smith lower level).
**Schedule for TA office hours after December 6**
- Thursday, December 13, 11am-1pm
- Friday, December 14, 11am-1pm
- Monday, December, 17, 2-5pm
- Tuesday, December 18, 2-5pm
<div class="second">
Weekly office hours will be held on:
- Wednesday: 14:00 - 17:00
- Thursday: 11:00 - 13:00
</div>
## <span class="glyphicon glyphicon-chevron-right" aria-hidden="true"></span> Instructors
[Professor Nathan Taback](http://utstat.toronto.edu/~nathan/) and Professor Nathalie Moon.
## <span class="glyphicon glyphicon-chevron-right" aria-hidden="true"></span> Syllabus
Important information about the course can found on the [Fall 2018 syllabus](Fall2018/STA130syllabus2018S-Fall2018.html).
## <span class="glyphicon glyphicon-chevron-right" aria-hidden="true"></span> Course Calendar
Important course dates can be found in the [course calender](Fall2018/STA130-Fall2018-Calendar.html).
## <span class="glyphicon glyphicon-chevron-right" aria-hidden="true"></span> Computing
The course will use [R](https://www.r-project.org) for computing. R is freely available [here](http://cran.utstat.utoronto.ca). We recommend using [R Studio](https://www.rstudio.com) which can be [downloaded](http://cran.utstat.utoronto.ca) for free. We will use [R Markdown](http://rmarkdown.rstudio.com) as an authoring framework for creating reproducible data science documents.
### <span class="glyphicon glyphicon-chevron-right" aria-hidden="true"></span> Getting Started with R
- If you have never programmed before then [Hands-On Programming with R, by Garrett Grolemund](https://d1b10bmlvqabco.cloudfront.net/attach/ighbo26t3ua52t/igp9099yy4v10/igz7vp4w5su9/OReilly_HandsOn_Programming_with_R_2014.pdf) is a great place to start.
- [R for Data Science, by Hadley Wickham and Garrett Grolemund](http://r4ds.had.co.nz) is a wonderful resource.
- A list of more resources is available on the course website [here](R_resources.html).
### RStudio Cloud or RStudio Desktop
1. Students in the course will be able to do all computing on R Studio Cloud <https://rstudio.cloud>
2. Another alternative is to install RStudio on your own computer. You will need to download [R](http://cran.utstat.utoronto.ca) then [RStudio](https://www.rstudio.com/products/rstudio/download/#download).
<a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/"><img alt="Creative Commons Licence" style="border-width:0" src="https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png" /></a><br />This website is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>.
R Markdown source for this website <a href="https://github.com/ntaback/UofT_STA130">
<i class="fa fa-github fa-2x" aria-hidden="true"></i>
</a>