forked from huggingface/optimum-intel
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathopenvino.py
472 lines (433 loc) · 20.6 KB
/
openvino.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Defines the command line for the export with OpenVINO."""
import logging
import sys
from pathlib import Path
from typing import TYPE_CHECKING, Optional
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE
from ...exporters import TasksManager
from ...intel.utils.import_utils import DIFFUSERS_IMPORT_ERROR, is_diffusers_available
from ...intel.utils.modeling_utils import _infer_library_from_model_name_or_path
from ...utils.save_utils import maybe_load_preprocessors
from ..base import BaseOptimumCLICommand, CommandInfo
logger = logging.getLogger(__name__)
if TYPE_CHECKING:
from argparse import ArgumentParser, Namespace, _SubParsersAction
def parse_args_openvino(parser: "ArgumentParser"):
required_group = parser.add_argument_group("Required arguments")
required_group.add_argument(
"-m", "--model", type=str, required=True, help="Model ID on huggingface.co or path on disk to load model from."
)
required_group.add_argument(
"output", type=Path, help="Path indicating the directory where to store the generated OV model."
)
optional_group = parser.add_argument_group("Optional arguments")
optional_group.add_argument(
"--task",
default="auto",
help=(
"The task to export the model for. If not specified, the task will be auto-inferred based on the model. Available tasks depend on the model, but are among:"
f" {str(TasksManager.get_all_tasks())}. For decoder models, use `xxx-with-past` to export the model using past key values in the decoder."
),
)
optional_group.add_argument(
"--framework",
type=str,
choices=["pt", "tf"],
default=None,
help=(
"The framework to use for the export. If not provided, will attempt to use the local checkpoint's original framework or what is available in the environment."
),
)
optional_group.add_argument(
"--trust-remote-code",
action="store_true",
help=(
"Allows to use custom code for the modeling hosted in the model repository. This option should only be set for repositories you trust and in which "
"you have read the code, as it will execute on your local machine arbitrary code present in the model repository."
),
)
optional_group.add_argument(
"--weight-format",
type=str,
choices=["fp32", "fp16", "int8", "int4", "mxfp4", "nf4"],
default=None,
help="The weight format of the exported model.",
)
optional_group.add_argument(
"--quant-mode",
type=str,
choices=["int8", "f8e4m3", "f8e5m2"],
default=None,
help=(
"Quantization precision mode. This is used for applying full model quantization including activations. "
),
)
optional_group.add_argument(
"--library",
type=str,
choices=["transformers", "diffusers", "timm", "sentence_transformers", "open_clip"],
default=None,
help="The library used to load the model before export. If not provided, will attempt to infer the local checkpoint's library",
)
optional_group.add_argument(
"--cache_dir",
type=str,
default=HUGGINGFACE_HUB_CACHE,
help="The path to a directory in which the downloaded model should be cached if the standard cache should not be used.",
)
optional_group.add_argument(
"--pad-token-id",
type=int,
default=None,
help=(
"This is needed by some models, for some tasks. If not provided, will attempt to use the tokenizer to guess it."
),
)
optional_group.add_argument(
"--ratio",
type=float,
default=None,
help=(
"A parameter used when applying 4-bit quantization to control the ratio between 4-bit and 8-bit quantization. If set to 0.8, 80%% of the layers will be quantized to int4 "
"while 20%% will be quantized to int8. This helps to achieve better accuracy at the sacrifice of the model size and inference latency. Default value is 1.0. "
"Note: If dataset is provided, and the ratio is less than 1.0, then data-aware mixed precision assignment will be applied."
),
)
optional_group.add_argument(
"--sym",
action="store_true",
default=None,
help=("Whether to apply symmetric quantization"),
)
optional_group.add_argument(
"--group-size",
type=int,
default=None,
help=("The group size to use for quantization. Recommended value is 128 and -1 uses per-column quantization."),
)
optional_group.add_argument(
"--backup-precision",
type=str,
choices=["none", "int8_sym", "int8_asym"],
default=None,
help=(
"Defines a backup precision for mixed-precision weight compression. Only valid for 4-bit weight formats. "
"If not provided, backup precision is int8_asym. 'none' stands for original floating-point precision of "
"the model weights, in this case weights are retained in their original precision without any "
"quantization. 'int8_sym' stands for 8-bit integer symmetric quantization without zero point. 'int8_asym' "
"stands for 8-bit integer asymmetric quantization with zero points per each quantization group."
),
)
optional_group.add_argument(
"--dataset",
type=str,
default=None,
help=(
"The dataset used for data-aware compression or quantization with NNCF. "
"For language models you can use the one from the list ['auto','wikitext2','c4','c4-new']. With 'auto' the "
"dataset will be collected from model's generations. "
"For diffusion models it should be on of ['conceptual_captions',"
"'laion/220k-GPT4Vision-captions-from-LIVIS','laion/filtered-wit']. "
"For visual language models the dataset must be set to 'contextual'. "
"Note: if none of the data-aware compression algorithms are selected and ratio parameter is omitted or "
"equals 1.0, the dataset argument will not have an effect on the resulting model."
),
)
optional_group.add_argument(
"--all-layers",
action="store_true",
default=None,
help=(
"Whether embeddings and last MatMul layers should be compressed to INT4. If not provided an weight "
"compression is applied, they are compressed to INT8."
),
)
optional_group.add_argument(
"--awq",
action="store_true",
default=None,
help=(
"Whether to apply AWQ algorithm. AWQ improves generation quality of INT4-compressed LLMs, but requires "
"additional time for tuning weights on a calibration dataset. To run AWQ, please also provide a dataset "
"argument. Note: it is possible that there will be no matching patterns in the model to apply AWQ, in such "
"case it will be skipped."
),
)
optional_group.add_argument(
"--scale-estimation",
action="store_true",
default=None,
help=(
"Indicates whether to apply a scale estimation algorithm that minimizes the L2 error between the original "
"and compressed layers. Providing a dataset is required to run scale estimation. Please note, that "
"applying scale estimation takes additional memory and time."
),
)
optional_group.add_argument(
"--gptq",
action="store_true",
default=None,
help=(
"Indicates whether to apply GPTQ algorithm that optimizes compressed weights in a layer-wise fashion to "
"minimize the difference between activations of a compressed and original layer. Please note, that "
"applying GPTQ takes additional memory and time."
),
)
optional_group.add_argument(
"--lora-correction",
action="store_true",
default=None,
help=(
"Indicates whether to apply LoRA Correction algorithm. When enabled, this algorithm introduces low-rank "
"adaptation layers in the model that can recover accuracy after weight compression at some cost of "
"inference latency. Please note, that applying LoRA Correction algorithm takes additional memory and time."
),
)
optional_group.add_argument(
"--sensitivity-metric",
type=str,
default=None,
help=(
"The sensitivity metric for assigning quantization precision to layers. It can be one of the following: "
"['weight_quantization_error', 'hessian_input_activation', 'mean_activation_variance', "
"'max_activation_variance', 'mean_activation_magnitude']."
),
)
optional_group.add_argument(
"--num-samples",
type=int,
default=None,
help="The maximum number of samples to take from the dataset for quantization.",
)
optional_group.add_argument(
"--disable-stateful",
action="store_true",
help=(
"Disable stateful converted models, stateless models will be generated instead. Stateful models are produced by default when this key is not used. "
"In stateful models all kv-cache inputs and outputs are hidden in the model and are not exposed as model inputs and outputs. "
"If --disable-stateful option is used, it may result in sub-optimal inference performance. "
"Use it when you intentionally want to use a stateless model, for example, to be compatible with existing "
"OpenVINO native inference code that expects KV-cache inputs and outputs in the model."
),
)
optional_group.add_argument(
"--disable-convert-tokenizer",
action="store_true",
help="Do not add converted tokenizer and detokenizer OpenVINO models.",
)
optional_group.add_argument(
"--smooth-quant-alpha",
type=float,
default=None,
help=(
"SmoothQuant alpha parameter that improves the distribution of activations before MatMul layers and "
"reduces quantization error. Valid only when activations quantization is enabled."
),
)
def no_compression_parameter_provided(args):
return all(
(
it is None
for it in (
args.ratio,
args.group_size,
args.sym,
args.all_layers,
args.dataset,
args.num_samples,
args.awq,
args.scale_estimation,
args.gptq,
args.lora_correction,
args.sensitivity_metric,
args.backup_precision,
)
)
)
def no_quantization_parameter_provided(args):
return all(
(
it is None
for it in (
args.sym,
args.dataset,
args.num_samples,
args.smooth_quant_alpha,
)
)
)
class OVExportCommand(BaseOptimumCLICommand):
COMMAND = CommandInfo(name="openvino", help="Export PyTorch models to OpenVINO IR.")
def __init__(
self,
subparsers: "_SubParsersAction",
args: Optional["Namespace"] = None,
command: Optional["CommandInfo"] = None,
from_defaults_factory: bool = False,
parser: Optional["ArgumentParser"] = None,
):
super().__init__(
subparsers, args=args, command=command, from_defaults_factory=from_defaults_factory, parser=parser
)
self.args_string = " ".join(sys.argv[3:])
@staticmethod
def parse_args(parser: "ArgumentParser"):
return parse_args_openvino(parser)
def run(self):
from ...exporters.openvino.__main__ import infer_task, main_export, maybe_convert_tokenizers
from ...exporters.openvino.utils import save_preprocessors
from ...intel.openvino.configuration import _DEFAULT_4BIT_CONFIG, OVConfig, get_default_int4_config
if self.args.library is None:
# TODO: add revision, subfolder and token to args
library_name = _infer_library_from_model_name_or_path(
model_name_or_path=self.args.model, cache_dir=self.args.cache_dir
)
if library_name == "sentence_transformers":
logger.warning(
"Library name is not specified. There are multiple possible variants: `sentence_transformers`, `transformers`."
"`transformers` will be selected. If you want to load your model with the `sentence-transformers` library instead, please set --library sentence_transformers"
)
library_name = "transformers"
else:
library_name = self.args.library
if self.args.weight_format is None and self.args.quant_mode is None:
ov_config = None
if not no_compression_parameter_provided(self.args):
raise ValueError(
"Some compression parameters are provided, but the weight format is not specified. "
"Please provide it with --weight-format argument."
)
if not no_quantization_parameter_provided(self.args):
raise ValueError(
"Some quantization parameters are provided, but the quantization mode is not specified. "
"Please provide it with --quant-mode argument."
)
elif self.args.weight_format in {"fp16", "fp32"}:
ov_config = OVConfig(dtype=self.args.weight_format)
elif self.args.weight_format is not None:
# For int4 quantization if no parameter is provided, then use the default config if exists
if no_compression_parameter_provided(self.args) and self.args.weight_format == "int4":
quantization_config = get_default_int4_config(self.args.model)
else:
is_int8 = self.args.weight_format == "int8"
quantization_config = {
"bits": 8 if is_int8 else 4,
"ratio": 1 if is_int8 else (self.args.ratio or _DEFAULT_4BIT_CONFIG["ratio"]),
"sym": self.args.sym or False,
"group_size": -1 if is_int8 else self.args.group_size,
"all_layers": None if is_int8 else self.args.all_layers,
"dataset": self.args.dataset,
"num_samples": self.args.num_samples,
"quant_method": "awq" if self.args.awq else "default",
"sensitivity_metric": self.args.sensitivity_metric,
"scale_estimation": self.args.scale_estimation,
"gptq": self.args.gptq,
"lora_correction": self.args.lora_correction,
"weight_format": self.args.weight_format,
"backup_precision": self.args.backup_precision,
}
if quantization_config.get("dataset", None) is not None:
quantization_config["trust_remote_code"] = self.args.trust_remote_code
ov_config = OVConfig(quantization_config=quantization_config)
else:
if self.args.dataset is None:
raise ValueError(
"Dataset is required for full quantization. Please provide it with --dataset argument."
)
quantization_config = {
"weight_format": self.args.quant_mode,
"activation_format": self.args.quant_mode,
"bits": 8,
"sym": self.args.sym or False,
"dataset": self.args.dataset,
"num_samples": self.args.num_samples,
"smooth_quant_alpha": self.args.smooth_quant_alpha,
"trust_remote_code": self.args.trust_remote_code,
}
ov_config = OVConfig(quantization_config=quantization_config)
quantization_config = ov_config.quantization_config if ov_config else None
quantize_with_dataset = quantization_config and getattr(quantization_config, "dataset", None) is not None
task = infer_task(self.args.task, self.args.model, library_name=library_name)
if library_name == "diffusers" and quantize_with_dataset:
if not is_diffusers_available():
raise ValueError(DIFFUSERS_IMPORT_ERROR.format("Export of diffusers models"))
from diffusers import DiffusionPipeline
diffusers_config = DiffusionPipeline.load_config(self.args.model)
class_name = diffusers_config.get("_class_name", None)
if class_name == "LatentConsistencyModelPipeline":
from optimum.intel import OVLatentConsistencyModelPipeline
model_cls = OVLatentConsistencyModelPipeline
elif class_name == "StableDiffusionXLPipeline":
from optimum.intel import OVStableDiffusionXLPipeline
model_cls = OVStableDiffusionXLPipeline
elif class_name == "StableDiffusionPipeline":
from optimum.intel import OVStableDiffusionPipeline
model_cls = OVStableDiffusionPipeline
elif class_name == "StableDiffusion3Pipeline":
from optimum.intel import OVStableDiffusion3Pipeline
model_cls = OVStableDiffusion3Pipeline
elif class_name == "FluxPipeline":
from optimum.intel import OVFluxPipeline
model_cls = OVFluxPipeline
else:
raise NotImplementedError(f"Quantization in hybrid mode isn't supported for class {class_name}.")
model = model_cls.from_pretrained(self.args.model, export=True, quantization_config=quantization_config)
model.save_pretrained(self.args.output)
if not self.args.disable_convert_tokenizer:
maybe_convert_tokenizers(library_name, self.args.output, model, task=task)
elif (
quantize_with_dataset
and (task.startswith("text-generation") or task == "automatic-speech-recognition")
or (task == "image-text-to-text" and quantization_config is not None)
):
if task.startswith("text-generation"):
from optimum.intel import OVModelForCausalLM
model_cls = OVModelForCausalLM
elif task == "image-text-to-text":
from optimum.intel import OVModelForVisualCausalLM
model_cls = OVModelForVisualCausalLM
else:
from optimum.intel import OVModelForSpeechSeq2Seq
model_cls = OVModelForSpeechSeq2Seq
# In this case, to apply quantization an instance of a model class is required
model = model_cls.from_pretrained(
self.args.model,
export=True,
quantization_config=quantization_config,
stateful=not self.args.disable_stateful,
trust_remote_code=self.args.trust_remote_code,
)
model.save_pretrained(self.args.output)
preprocessors = maybe_load_preprocessors(self.args.model, trust_remote_code=self.args.trust_remote_code)
save_preprocessors(preprocessors, model.config, self.args.output, self.args.trust_remote_code)
if not self.args.disable_convert_tokenizer:
maybe_convert_tokenizers(library_name, self.args.output, preprocessors=preprocessors, task=task)
else:
# TODO : add input shapes
main_export(
model_name_or_path=self.args.model,
output=self.args.output,
task=self.args.task,
framework=self.args.framework,
cache_dir=self.args.cache_dir,
trust_remote_code=self.args.trust_remote_code,
pad_token_id=self.args.pad_token_id,
ov_config=ov_config,
stateful=not self.args.disable_stateful,
convert_tokenizer=not self.args.disable_convert_tokenizer,
library_name=library_name,
# **input_shapes,
)