forked from huggingface/optimum-intel
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfiguration.py
249 lines (219 loc) · 11.4 KB
/
configuration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from enum import Enum
from typing import Any, Dict, List, Optional, Union
import datasets
import nncf
import torch
from nncf.quantization.advanced_parameters import OverflowFix
from transformers import PretrainedConfig
from transformers.utils.quantization_config import QuantizationConfigMixin, QuantizationMethod
from optimum.configuration_utils import BaseConfig
_DEFAULT_4BIT_CONFIGS = {
"databricks/dolly-v2-3b": {"bits": 4, "sym": False, "group_size": 32, "ratio": 0.5},
"EleutherAI/gpt-j-6b": {"bits": 4, "sym": False, "group_size": 64},
"facebook/opt-6.7b": {"bits": 4, "sym": False, "group_size": 64, "ratio": 0.8},
"bigscience/bloomz-7b1": {"bits": 4, "sym": False, "group_size": 32, "ratio": 0.6},
"togethercomputer/RedPajama-INCITE-7B-Instruct": {"bits": 4, "sym": False, "group_size": 128},
"HuggingFaceH4/zephyr-7b-beta": {"bits": 4, "sym": True, "group_size": 64, "ratio": 0.6},
"meta-llama/Llama-2-7b": {"bits": 4, "sym": True, "group_size": 128, "ratio": 0.6},
"meta-llama/Llama-2-7b-chat": {"bits": 4, "sym": True, "group_size": 128, "ratio": 0.8},
"meta-llama/Llama-2-13b-chat": {"bits": 4, "sym": True, "group_size": 64, "ratio": 0.8},
"stabilityai/stablelm-3b-4e1t": {"bits": 4, "sym": True, "group_size": 64, "ratio": 0.8},
"stablelm-epoch-3b-preview": {"bits": 4, "sym": True, "group_size": 64, "ratio": 0.8},
"stable-zephyr-3b-dpo": {"bits": 4, "sym": False, "group_size": 64, "ratio": 0.8},
"pansophic/rocket-3B": {"bits": 4, "sym": True, "group_size": 128, "ratio": 0.8},
"THUDM/chatglm2-6b": {"bits": 4, "sym": True, "group_size": 128, "ratio": 0.72},
"Qwen/Qwen-7B-Chat": {"bits": 4, "sym": True, "group_size": 128, "ratio": 0.6},
"openlm-research/open_llama_3b": {"bits": 4, "sym": True, "group_size": 64, "all_layers": True},
"tiiuae/falcon-7b": {"bits": 4, "sym": True, "group_size": 64, "all_layers": True},
"psmathur/orca_mini_3b": {"bits": 4, "sym": True, "group_size": 64, "all_layers": True},
"mistralai/Mixtral-8x7B-v0.1": {"bits": 4, "sym": True, "group_size": 128, "ratio": 0.8},
}
@dataclass
class OVQuantizationConfigBase(QuantizationConfigMixin):
def __init__(
self,
dataset: Optional[Union[str, List[str], nncf.Dataset, datasets.Dataset]] = None,
ignored_scope: Optional[Union[dict, nncf.IgnoredScope]] = None,
subset_size: Optional[int] = None,
):
self.dataset = dataset
self.ignored_scope = ignored_scope
self.subset_size = subset_size
def post_init(self):
if self.dataset is not None and isinstance(self.dataset, str):
llm_datasets = ["wikitext2", "c4", "c4-new", "ptb", "ptb-new"]
stable_diffusion_datasets = [
"conceptual_captions",
"laion/220k-GPT4Vision-captions-from-LIVIS",
"laion/filtered-wit",
]
if self.dataset not in llm_datasets + stable_diffusion_datasets:
raise ValueError(
f"""You have entered a string value for dataset. You can only choose between
{llm_datasets} for LLLMs or {stable_diffusion_datasets} for diffusion models, but we found {self.dataset}"""
)
class OVConfig(BaseConfig):
CONFIG_NAME = "openvino_config.json"
FULL_CONFIGURATION_FILE = "openvino_config.json"
def __init__(
self,
input_info: Optional[List] = None,
save_onnx_model: bool = False,
quantization_config: Optional[Union[Dict, OVQuantizationConfigBase]] = None,
dtype: Optional[str] = None,
**kwargs,
):
super().__init__()
self.input_info = input_info
self.save_onnx_model = save_onnx_model
self.optimum_version = kwargs.pop("optimum_version", None)
self.quantization_config = quantization_config
self.compression = None # A backward-compatability field for training-time compression parameters
bits = (
self.quantization_config.bits if isinstance(self.quantization_config, OVWeightQuantizationConfig) else None
)
self.dtype = "int" + str(bits) if isinstance(bits, int) else dtype
def add_input_info(self, model_inputs: Dict, force_batch_one: bool = False):
self.input_info = [
{
"sample_size": [1] + list(value.shape[1:]) if force_batch_one else list(value.shape),
"type": "long" if value.dtype is torch.int64 else "float",
"keyword": name,
}
for name, value in model_inputs.items()
]
def to_dict(self) -> Dict[str, Any]:
# Parent to_dict() implementation does not support quantization_config being None
if self.quantization_config is None:
self.quantization_config = OVQuantizationConfigBase()
result = super().to_dict()
del result["quantization_config"]
return result
class OVQuantizationMethod(str, Enum):
DEFAULT = "default"
@dataclass
class OVWeightQuantizationConfig(OVQuantizationConfigBase):
"""
This is a wrapper class about all possible attributes and features that you can play with a model that has been
loaded using `optimum-intel` api for quantization with NNCF.
Args:
bits (`int`, defaults to 8):
The number of bits to quantize to.
sym (`bool`, defaults to `False`):
Whether to use symmetric quantization.
tokenizer (`str` or `PreTrainedTokenizerBase`, *optional*):
The tokenizer used to process the dataset. You can pass either:
- A custom tokenizer object.
- A string, the *model id* of a predefined tokenizer hosted inside a model repo on huggingface.co.
Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a
user or organization name, like `dbmdz/bert-base-german-cased`.
- A path to a *directory* containing vocabulary files required by the tokenizer, for instance saved
using the [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.
dataset (`str or List[str]`, *optional*):
The dataset used for data-aware compression or quantization with NNCF. You can provide your own dataset
in a list of strings or just use the one from the list ['wikitext2','c4','c4-new','ptb','ptb-new'] for LLLMs
or ['conceptual_captions','laion/220k-GPT4Vision-captions-from-LIVIS','laion/filtered-wit'] for diffusion models.
ratio (`float`, defaults to 1.0):
The ratio between baseline and backup precisions (e.g. 0.9 means 90% of layers quantized to INT4_ASYM
and the rest to INT8_ASYM).
group_size (`int`, *optional*):
The group size to use for quantization. Recommended value is 128 and -1 uses per-column quantization.
all_layers (`bool`, *optional*):
Defines how many layers are compressed to 4-bits while the rest are kept in 8-bit precision.
sensitivity_metric (`str`, *optional*):
The sensitivity metric for assigning quantization precision to layers. In order to
preserve the accuracy of the model, the more sensitive layers receives a higher precision.
ignored_scope (`dict`, *optional*):
An ignored scope that defined the list of model control flow graph nodes to be ignored during quantization.
subset_size (`int`, *optional*):
The maximum number of samples composing the calibration dataset.
"""
def __init__(
self,
dataset: Optional[Union[str, List[str], nncf.Dataset, datasets.Dataset]] = None,
bits: int = 8,
ignored_scope: Optional[Union[dict, nncf.IgnoredScope]] = None,
sym: bool = False,
tokenizer: Optional[Any] = None,
ratio: float = 1.0,
group_size: Optional[int] = None,
all_layers: Optional[bool] = None,
sensitivity_metric: Optional[str] = None,
subset_size: Optional[int] = None,
quant_method: Optional[Union[QuantizationMethod, OVQuantizationMethod]] = OVQuantizationMethod.DEFAULT,
):
super().__init__(dataset, ignored_scope, subset_size)
self.bits = bits
self.sym = sym
self.tokenizer = tokenizer
self.group_size = group_size or (-1 if bits == 8 else 128)
self.ratio = ratio
self.all_layers = all_layers
self.sensitivity_metric = sensitivity_metric
self.subset_size = subset_size
self.quant_method = quant_method
self.post_init()
def post_init(self):
r"""
Safety checker that arguments are correct
"""
super().post_init()
if self.ratio is not None and not (0 <= self.ratio <= 1):
raise ValueError("`ratio` must between 0 and 1.")
if self.group_size is not None and self.group_size != -1 and self.group_size <= 0:
raise ValueError("`group_size` must be greater than 0 or equal to -1")
if self.bits not in [4, 8]:
raise ValueError(f"Only support quantization to [4,8] bits but found {self.bits}")
if self.bits == 8:
if self.ratio != 1:
raise ValueError(
f"For 8-bit quantization, `ratio` is expected to be set to 1.0, but was set to {self.ratio}"
)
if self.group_size != -1:
raise ValueError(
f"For 8-bit quantization, `group_size` is expected to be set to -1, but was set to {self.group_size}"
)
@dataclass
class OVQuantizationConfig(OVQuantizationConfigBase):
def __init__(
self,
dataset: Union[str, List[str], nncf.Dataset, datasets.Dataset],
ignored_scope: Optional[nncf.IgnoredScope] = None,
subset_size: Optional[int] = 300,
preset: nncf.QuantizationPreset = nncf.QuantizationPreset.MIXED,
model_type: nncf.ModelType = nncf.ModelType.TRANSFORMER,
fast_bias_correction: bool = True,
overflow_fix: OverflowFix = OverflowFix.DISABLE,
):
super().__init__(dataset, ignored_scope, subset_size)
self.preset = preset
self.model_type = model_type
self.fast_bias_correction = fast_bias_correction
self.overflow_fix = overflow_fix
self.post_init()
def post_init(self):
"""
Safety checker that arguments are correct
"""
super().post_init()
# if self.dataset is None:
# raise ValueError(
# "`dataset` is needed to compute the activations range during the calibration step and was not provided."
# " In case you only want to apply quantization on the weights, please set `weights_only=True`."
# )
def _check_default_4bit_configs(config: PretrainedConfig):
return _DEFAULT_4BIT_CONFIGS.get(config.name_or_path, None)