-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtls_record_joy.py
310 lines (274 loc) · 16.8 KB
/
tls_record_joy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
from stats.stats import IterableStats
import numpy as np
import pandas as pd
import hashlib
import os
import json
class TLSRecordJoy():
'''
'''
# Note that in Joy, the output path is always relative, i.e, it appends './' before the given filepath.
def __init__(self, pcap_filepath, config_filepath=os.path.join(os.path.dirname(__file__), 'tools/config.json'),
output_filepath='tls-cisco-joy.json', **kwargs):
super().__init__(**kwargs)
self.pcap_filepath = pcap_filepath
self.config_filepath = config_filepath
self.output_filepath = output_filepath
def execute_joy(self, nfstream_sessions_df=None):
joy_config = self._read_joy_config_file()
joy_command = ' '.join([joy_config['CiscoJoyPath'],
'preemptive_timeout=0',
'bidir=1',
'tls=1',
'output='+self.output_filepath,
self.pcap_filepath])
print(joy_command)
res = os.system(joy_command)
if res != 0 :
raise Exception('[3rd-party tool] Cisco Joy didnt execute succesfully')
joy_df = self._read_joy_output()
os.remove(self.output_filepath)
if joy_df is None:
return nfstream_sessions_df
if nfstream_sessions_df is None:
return joy_df
nfstream_sessions_df['hashed_session_id'] = nfstream_sessions_df.apply(self._five_tuple, axis=1)
nfstream_sessions_df.reset_index()
merged_df = nfstream_sessions_df.merge(joy_df,
on='hashed_session_id',
how='left',
validate='one_to_one',
left_index=True).drop('hashed_session_id', axis=1)
return merged_df
def _read_joy_config_file(self):
with open(self.config_filepath) as text_config:
json_config = json.loads(text_config.read())
return json_config
def _read_joy_output(self):
exctracted_features = []
with open(self.output_filepath, "r") as joy_output:
for i,row in enumerate(joy_output):
if i == 0: # first line is metadata
continue # skip
flow = json.loads(row)
if 'tls' in flow:
exctracted_features.append(self._extract_features(flow))
if len(exctracted_features) == 0:
return None
joy_df = pd.DataFrame(exctracted_features)
joy_df['protocol'] = 6 # TCP
joy_df['hashed_session_id'] = joy_df.apply(self._five_tuple, axis=1)
joy_df = joy_df.drop(['src_ip', 'src_port','dst_ip','dst_port','protocol'], axis=1)
return joy_df.reset_index()
def _extract_features(self, flow, n_records=20):
# general flow features
extracted_flow_features = {
'src_ip': flow['sa'],
'src_port': flow['sp'],
'dst_ip': flow['da'],
'dst_port': flow['dp'],
}
# TLS:
tls = flow['tls']
exctracted_general_tls_features = self._exctract_general_tls_features(tls)
exctracted_tls_features = self._exctract_tls_record_features(tls['srlt'])
extracted_early_tls_features = self._exctract_tls_record_features(tls['srlt'][:min(n_records, len(tls['srlt']))])
# rename dictionary keys
extracted_early_tls_features = { key+'_n' : value for key, value in extracted_early_tls_features.items() }
return {**exctracted_general_tls_features,
**extracted_flow_features,
**exctracted_tls_features,
'tls_early_records_n': n_records,
**extracted_early_tls_features}
def _exctract_general_tls_features(self, tls):
# general TLS features
extracted_tls_general_features = {
'tls_cipher_suites': list(tls['cs']),
}
return extracted_tls_general_features
def _extract_tls_clump_features(self, clumps):
# clumped TLS features
'''
Clump is an aggregation of multiple records in the same direction.
A clump is closed when the following record is sent in the reversed direction, which then
opens a new clump for records in the reversed direction.
The first clump is from source to destination.
'''
# bidirectional
clump_bytes = list(map(lambda clump: sum(map(lambda record: record['b'], clump)), clumps))
clump_bytes_stats = IterableStats(clump_bytes)
clump_sizes = list(map(lambda clump: len(clump), clumps))
clump_sizes_stats = IterableStats(clump_sizes)
extracted_tls_clumped_features = {
'bidirectional_tls_clumps': len(clumps),
'bidirectional_tls_clump_bytes': clump_bytes,
'bidirectional_tls_clump_sizes': clump_sizes,
'bidirectional_mean_tls_clump_bytes': clump_bytes_stats.average(),
'bidirectional_median_tls_clump_bytes': clump_bytes_stats.median(),
'bidirectional_stddev_tls_clump_bytes': clump_bytes_stats.std_deviation(),
'bidirectional_variance_tls_clump_bytes': clump_bytes_stats.variance(),
'bidirectional_skew_from_median_tls_clump_bytes': clump_bytes_stats.skew_from_median(),
'bidirectional_coeff_of_var_tls_clump_bytes': clump_bytes_stats.coeff_of_variation(),
'bidirectional_min_tls_clump_bytes': clump_bytes_stats.min(),
'bidirectional_max_tls_clump_bytes': clump_bytes_stats.max(),
'bidirectional_mean_tls_clump_sizes': clump_sizes_stats.average(),
'bidirectional_median_tls_clump_sizes': clump_sizes_stats.median(),
'bidirectional_stddev_tls_clump_sizes': clump_sizes_stats.std_deviation(),
'bidirectional_variance_tls_clump_sizes': clump_sizes_stats.variance(),
'bidirectional_skew_from_median_tls_clump_sizes': clump_sizes_stats.skew_from_median(),
'bidirectional_coeff_of_var_tls_clump_sizes': clump_sizes_stats.coeff_of_variation(),
'bidirectional_min_tls_clump_sizes': clump_sizes_stats.min(),
'bidirectional_max_tls_clump_sizes': clump_sizes_stats.max(),
}
# src -> dst
src2dst_clumps = clumps[::2]
src2dst_clump_bytes = list(map(lambda clump: sum(map(lambda record: record['b'], clump)), src2dst_clumps))
src2dst_clump_bytes_stats = IterableStats(src2dst_clump_bytes)
src2dst_clump_sizes = list(map(lambda clump: len(clump), src2dst_clumps))
src2dst_clump_sizes_stats = IterableStats(src2dst_clump_sizes)
src2dst_extracted_tls_clumped_features = {
'src2dst_tls_clumps': len(src2dst_clumps),
'src2dst_tls_clump_bytes': src2dst_clump_bytes,
'src2dst_tls_clump_sizes': src2dst_clump_sizes,
'src2dst_mean_tls_clump_bytes': src2dst_clump_bytes_stats.average(),
'src2dst_median_tls_clump_bytes': src2dst_clump_bytes_stats.median(),
'src2dst_stddev_tls_clump_bytes': src2dst_clump_bytes_stats.std_deviation(),
'src2dst_variance_tls_clump_bytes': src2dst_clump_bytes_stats.variance(),
'src2dst_skew_from_median_tls_clump_bytes': src2dst_clump_bytes_stats.skew_from_median(),
'src2dst_coeff_of_var_tls_clump_bytes': src2dst_clump_bytes_stats.coeff_of_variation(),
'src2dst_min_tls_clump_bytes': src2dst_clump_bytes_stats.min(),
'src2dst_max_tls_clump_bytes': src2dst_clump_bytes_stats.max(),
'src2dst_mean_tls_clump_sizes': src2dst_clump_sizes_stats.average(),
'src2dst_median_tls_clump_sizes': src2dst_clump_sizes_stats.median(),
'src2dst_stddev_tls_clump_sizes': src2dst_clump_sizes_stats.std_deviation(),
'src2dst_variance_tls_clump_sizes': src2dst_clump_sizes_stats.variance(),
'src2dst_skew_from_median_tls_clump_sizes': src2dst_clump_sizes_stats.skew_from_median(),
'src2dst_coeff_of_var_tls_clump_sizes': src2dst_clump_sizes_stats.coeff_of_variation(),
'src2dst_min_tls_clump_sizes': src2dst_clump_sizes_stats.min(),
'src2dst_max_tls_clump_sizes': src2dst_clump_sizes_stats.max(),
}
# dst -> src
dst2src_clumps = clumps[1::2]
dst2src_clump_bytes = list(map(lambda clump: sum(map(lambda record: record['b'], clump)), dst2src_clumps))
dst2src_clump_bytes_stats = IterableStats(dst2src_clump_bytes)
dst2src_clump_sizes = list(map(lambda clump: len(clump), dst2src_clumps))
dst2src_clump_sizes_stats = IterableStats(dst2src_clump_sizes)
dst2src_extracted_tls_clumped_features = {
'dst2src_tls_clumps': len(dst2src_clumps),
'dst2src_tls_clump_bytes': dst2src_clump_bytes,
'dst2src_tls_clump_sizes': dst2src_clump_sizes,
'dst2src_mean_tls_clump_bytes': dst2src_clump_bytes_stats.average(),
'dst2src_median_tls_clump_bytes': dst2src_clump_bytes_stats.median(),
'dst2src_stddev_tls_clump_bytes': dst2src_clump_bytes_stats.std_deviation(),
'dst2src_variance_tls_clump_bytes': dst2src_clump_bytes_stats.variance(),
'dst2src_skew_from_median_tls_clump_bytes': dst2src_clump_bytes_stats.skew_from_median(),
'dst2src_coeff_of_var_tls_clump_bytes': dst2src_clump_bytes_stats.coeff_of_variation(),
'dst2src_min_tls_clump_bytes': dst2src_clump_bytes_stats.min(),
'dst2src_max_tls_clump_bytes': dst2src_clump_bytes_stats.max(),
'dst2src_mean_tls_clump_sizes': dst2src_clump_sizes_stats.average(),
'dst2src_median_tls_clump_sizes': dst2src_clump_sizes_stats.median(),
'dst2src_stddev_tls_clump_sizes': dst2src_clump_sizes_stats.std_deviation(),
'dst2src_variance_tls_clump_sizes': dst2src_clump_sizes_stats.variance(),
'dst2src_skew_from_median_tls_clump_sizes': dst2src_clump_sizes_stats.skew_from_median(),
'dst2src_coeff_of_var_tls_clump_sizes': dst2src_clump_sizes_stats.coeff_of_variation(),
'dst2src_min_tls_clump_sizes': dst2src_clump_sizes_stats.min(),
'dst2src_max_tls_clump_sizes': dst2src_clump_sizes_stats.max(),
}
return {**src2dst_extracted_tls_clumped_features,
**dst2src_extracted_tls_clumped_features,
**extracted_tls_clumped_features}
def _exctract_tls_record_features(self, records):
# src -> dst
src2dst_tls_records = list(filter(lambda tls_record: tls_record['dir'] == '>', records))
src2dst_tls_record_sizes = list(map(lambda tls_record: tls_record['b'], src2dst_tls_records))
src2dst_stats = IterableStats(src2dst_tls_record_sizes)
src2dst_extracted_features = {
'src2dst_tls_records': len(src2dst_tls_records),
'src2dst_tls_record_types': list(map(lambda tls_record: tls_record['tp'], src2dst_tls_records)) ,
'src2dst_tls_record_sizes': src2dst_tls_record_sizes,
'src2dst_tls_record_frequencies': {key : value for key,value in np.asarray(np.unique(src2dst_tls_record_sizes, return_counts=True) ).T},
'src2dst_tls_payload_bytes': sum(src2dst_tls_record_sizes),
'src2dst_tls_record_distinct_sizes': len(np.unique(src2dst_tls_record_sizes)),
'src2dst_mean_tls_record_size': src2dst_stats.average(),
'src2dst_median_tls_record_size': src2dst_stats.median(),
'src2dst_stddev_tls_record_size': src2dst_stats.std_deviation(),
'src2dst_variance_tls_record_size': src2dst_stats.variance(),
'src2dst_skew_from_median_tls_record_size': src2dst_stats.skew_from_median(),
'src2dst_coeff_of_var_tls_record_size': src2dst_stats.coeff_of_variation(),
'src2dst_min_tls_record_size': src2dst_stats.min(),
'src2dst_max_tls_record_size': src2dst_stats.max(),
}
# dst -> src
dst2src_tls_records = list(filter(lambda tls_record: tls_record['dir'] == '<', records))
dst2src_tls_record_sizes = list(map(lambda tls_record: tls_record['b'], dst2src_tls_records))
dst2src_stats = IterableStats(dst2src_tls_record_sizes)
dst2src_extracted_features = {
'dst2src_tls_records': len(dst2src_tls_records),
'dst2src_tls_record_types': list(map(lambda tls_record: tls_record['tp'], dst2src_tls_records)) ,
'dst2src_tls_record_sizes': dst2src_tls_record_sizes,
'dst2src_tls_record_frequencies': {key : value for key,value in np.asarray(np.unique(dst2src_tls_record_sizes, return_counts=True) ).T},
'dst2src_tls_payload_bytes': sum(dst2src_tls_record_sizes),
'dst2src_tls_record_distinct_sizes': len(np.unique(dst2src_tls_record_sizes)),
'dst2src_mean_tls_record_size': dst2src_stats.average(),
'dst2src_median_tls_record_size': dst2src_stats.median(),
'dst2src_stddev_tls_record_size': dst2src_stats.std_deviation(),
'dst2src_variance_tls_record_size': dst2src_stats.variance(),
'dst2src_skew_from_median_tls_record_size': dst2src_stats.skew_from_median(),
'dst2src_coeff_of_var_tls_record_size': dst2src_stats.coeff_of_variation(),
'dst2src_min_tls_record_size': dst2src_stats.min(),
'dst2src_max_tls_record_size': dst2src_stats.max(),
}
# bidirectional
tls_record_sizes = list(map(lambda tls_record: tls_record['b'], records))
bi_stats = IterableStats(tls_record_sizes)
bidirectional_extracted_features = {
'bidirectional_tls_records': len(records),
'bidirectional_tls_record_types': list(map(lambda tls_record: tls_record['tp'], records)) ,
'bidirectional_tls_record_sizes': tls_record_sizes,
'bidirectional_tls_record_frequencies': {key : value for key,value in np.asarray(np.unique(tls_record_sizes, return_counts=True) ).T},
'bidirectional_tls_payload_bytes': sum(tls_record_sizes),
'bidirectional_tls_record_distinct_sizes': len(np.unique(tls_record_sizes)),
'bidirectional_mean_tls_record_size': bi_stats.average(),
'bidirectional_median_tls_record_size': bi_stats.median(),
'bidirectional_stddev_tls_record_size': bi_stats.std_deviation(),
'bidirectional_variance_tls_record_size': bi_stats.variance(),
'bidirectional_skew_from_median_tls_record_size': bi_stats.skew_from_median(),
'bidirectional_coeff_of_var_tls_record_size': bi_stats.coeff_of_variation(),
'bidirectional_min_tls_record_size': bi_stats.min(),
'bidirectional_max_tls_record_size': bi_stats.max(),
}
return {**src2dst_extracted_features,
**dst2src_extracted_features,
**bidirectional_extracted_features,
**self._extract_tls_clump_features(self._clumps(records))}
def _clumps(self, tls_records):
clumps = []
dir = '>'
begin = 0
end = 0
for i, record in enumerate(tls_records):
if dir != record['dir']:
end = i
clump = tls_records[begin:end]
clumps.append(clump)
begin = end
dir = record['dir']
if end < begin:
clump = tls_records[begin:len(tls_records)]
clumps.append(clump)
return clumps
def _five_tuple(self, row):
return hashlib.md5(
'-'.join(sorted([
row['src_ip'],
str(row['src_port']),
row['dst_ip'],
str(row['dst_port']),
str(row['protocol'])
])).encode()
).digest()
if __name__ == '__main__':
print('starting')
#df = pd.read_csv('./temp/out-sessions.csv')
merged_df = TLSRecordJoy(r'./pcaps/DoH-Firefox84-NextDNS-1-pcap-format.pcap').execute_joy()
merged_df.to_csv('./temp/out-sessions-merged-with-tls.csv')