-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreduce_dim.py
198 lines (151 loc) · 5.98 KB
/
reduce_dim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import os
import sys
sys.path.append(os.path.join(os.path.dirname(__file__), ".."))
sys.path.append("/home/knf792/PycharmProjects/pixel-2/")
import numpy as np
from datasets import load_dataset
from pixel_datasets.dataset_transformations import (
SimpleTorchTransform,
)
from pixel_datasets.pixel_dataset_generator import PretrainingDataset
from pixel import PIXELForSequenceClassification
from glob import glob
import wandb
from tqdm.auto import tqdm
from pixel.utils.inference import load_general_model, encode_image, get_inference_font
from PIL import Image
import matplotlib.pyplot as plt
import torch
import pandas as pd
from sklearn.manifold import TSNE
import seaborn as sns
from sklearn.cluster import SpectralClustering
MODEL_NAME = "Nadav/Pixel-real-scans-v3"
IMAGES_PATH = "/projects/copenlu/data/nadav/pixel/images_to_encode/reviews/"
def load_text_dataset(seed=42):
text_dataset = load_dataset("amazon_reviews_multi", "en", split="validation")
text_dataset = text_dataset.shuffle(seed=seed)
text_dataset = text_dataset.filter(
lambda x: len(x["review_body"].split()) > 20
and len(x["review_body"].split()) < 30
)
text_dataset = text_dataset.rename_column("review_body", "text")
return text_dataset
def load_image_dataset(seed=42):
dataset = load_dataset(
"Nadav/CaribbeanScans",
split="test",
cache_dir="/projects/copenlu/data/nadav/cache",
)
dataset = dataset.shuffle(seed=seed)
dataset = dataset.select(range(1000))
dataset = dataset.filter(lambda x: x["image"].size == (368, 368))
dataset = dataset["image"]
dataset = [image.copy().convert("RGB") for image in dataset]
return dataset
def dump_reviews_images_to_disk():
config = wandb.config
print("Starting to dump images to disk...")
if not os.path.exists(IMAGES_PATH):
os.makedirs(IMAGES_PATH)
seed = config["seed"]
rng = np.random.RandomState(seed)
text_dataset = load_text_dataset(seed)
transform = SimpleTorchTransform(config, rng=rng)
dataset = PretrainingDataset(
config=config, text_dataset=text_dataset, transform=transform, rng=rng
)
inference_font = get_inference_font()
for i, instance in tqdm(enumerate(text_dataset)):
image = dataset.generate_inference_image(
instance["text"], inference_font, split_text=False
)
image = Image.fromarray(image)
image_name = instance["review_id"].replace(" ", "_") + ".png"
image.save(os.path.join(IMAGES_PATH, image_name))
print(f"Done dumping {i} images!")
def get_images_to_encode(config):
images_path = glob(IMAGES_PATH + "/*.png")
print(f"Found {len(images_path)} images to encode!")
images = [
Image.open(image_path).copy().convert("RGB") for image_path in images_path
]
names = [image_path.split("/")[-1].split(".")[0] for image_path in images_path]
return images, names
def reduce_dim(embeddings):
tsne = TSNE(n_components=2, random_state=0)
vectors_2d = tsne.fit_transform(embeddings)
return vectors_2d
def cluster(embeddings):
n_clusters = 2
# Create an instance of the SpectralClustering class
sc = SpectralClustering(n_clusters=n_clusters)
# Fit the model to the data
sc.fit(embeddings)
# Get the cluster labels for each vector
labels = sc.labels_
return labels
def plot(vectors_2d, lengths):
df = pd.DataFrame({"x": vectors_2d[:, 0], "y": vectors_2d[:, 1], "length": lengths})
ax = sns.scatterplot(data=df, x="x", y="y", hue="length", palette="flare")
norm = plt.Normalize(min(lengths), max(lengths))
sm = plt.cm.ScalarMappable(cmap="flare", norm=norm)
sm.set_array([])
ax.get_legend().remove()
ax.figure.colorbar(sm, label="length")
plt.savefig("review_length.png", dpi=300)
def plot_nothing(vectors_2d):
df = pd.DataFrame({"x": vectors_2d[:, 0], "y": vectors_2d[:, 1]})
ax = sns.scatterplot(data=df, x="x", y="y")
plt.savefig("evaluations/real_scans.png", dpi=300)
def plot_class(vectors_2d, classes):
df = pd.DataFrame({"x": vectors_2d[:, 0], "y": vectors_2d[:, 1], "class": classes})
ax = sns.scatterplot(data=df, x="x", y="y", hue="class")
plt.savefig("evaluations/review_class.png", dpi=300)
# def main():
# model = load_general_model(
# wandb.config, MODEL_NAME, model_type=PIXELForSequenceClassification
# )
# text_dataset = load_dataset("amazon_reviews_multi", "en", split="validation")
# id_to_class = {
# id_: class_
# for id_, class_ in zip(
# text_dataset["review_id"],
# text_dataset["product_category"],
# )
# }
# images_to_encode, names = get_images_to_encode(wandb.config)
# embeddings = []
# for image in tqdm(images_to_encode):
# embeddings.append(encode_image(model, image))
# embeddings = np.array(embeddings)
# classes = [id_to_class[id_] for id_ in names]
# embeddings_2d = reduce_dim(embeddings)
# plot_class(embeddings_2d, classes)
def log_to_wandb(embeddings, images):
# Create a "target" column
df = pd.DataFrame({"image": [], "embeddings": []})
df["embeddings"] = [list(embedding) for embedding in embeddings]
df["image"] = images
df.to_pickle("evaluations/embeddings.pkl")
df["image"] = [wandb.Image(image.resize((46, 46))) for image in images]
wandb.log({"embeddings": df})
wandb.finish()
def main():
model = load_general_model(
wandb.config, MODEL_NAME, model_type=PIXELForSequenceClassification
)
images_to_encode = load_image_dataset(wandb.config["seed"])
embeddings = []
for image in tqdm(images_to_encode):
embeddings.append(encode_image(model, image))
embeddings = np.array(embeddings)
embeddings_2d = reduce_dim(embeddings)
plot_nothing(embeddings_2d)
log_to_wandb(embeddings, images_to_encode)
if __name__ == "__main__":
wandb.init(
config="/home/knf792/PycharmProjects/pixel-2/configs/inference_config.yaml",
project="pixel",
)
main()