-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_and_upload_glue_dataset.py
121 lines (102 loc) · 3.57 KB
/
generate_and_upload_glue_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
from pixel_datasets.glue_dataset_generator import GlueDatasetForPixel
from pixel_datasets.dataset_transformations import (
SyntheticDatasetTransform,
SimpleTorchTransform,
)
import numpy as np
import pandas as pd
from PIL import Image
import datasets
import wandb
import glob
from tqdm.auto import tqdm
import matplotlib.pyplot as plt
from datasets import Dataset, DatasetDict
import sys
TASKS = ["sst2", "wnli", "cola", "mnli", "mrpc", "qnli", "qqp", "rte", "stsb"]
def get_datasets(args, seed=42):
rng = np.random.RandomState(seed)
transform = SyntheticDatasetTransform(args, rng)
train_dataset = GlueDatasetForPixel(
config=args, task=args.task_name, split="train", transform=transform, rng=rng
)
test_dataset = GlueDatasetForPixel(
config=args,
task=args.task_name,
split="validation",
transform=transform,
rng=rng,
)
return train_dataset, test_dataset
def convert_instance_to_dataset(instance):
new_instance = {}
image = instance["pixel_values"].numpy()
image = (image * 255).astype(np.uint8)
image = np.transpose(image, (1, 2, 0))
new_instance["image"] = Image.fromarray(image)
new_instance["label"] = instance["label"]
return new_instance
def main(task, split):
wandb.init(
config="/home/knf792/PycharmProjects/pixel-2/configs/glue_config_low_noise.yaml",
mode="disabled",
)
task = TASKS[int(task)]
print(task)
wandb.config.update({"task_name": task}, allow_val_change=True)
train_dataset, test_dataset = get_datasets(wandb.config)
new_test_dataset_as_dict = {"image": [], "label": []}
new_train_dataset_as_dict = {"image": [], "label": []}
if split != "train":
for i in tqdm(range(len(test_dataset))):
instance = convert_instance_to_dataset(test_dataset[i])
new_test_dataset_as_dict["image"].append(instance["image"])
new_test_dataset_as_dict["label"].append(instance["label"])
if split != "test":
for i in tqdm(range(len(train_dataset))):
instance = convert_instance_to_dataset(train_dataset[i])
new_train_dataset_as_dict["image"].append(instance["image"])
new_train_dataset_as_dict["label"].append(instance["label"])
num_labels = len(set(new_test_dataset_as_dict["label"]))
print(f"Number of labels: {num_labels}")
feature = (
datasets.Value("float32")
if task == "stsb"
else datasets.ClassLabel(num_classes=num_labels)
)
new_test_dataset = Dataset.from_dict(
new_test_dataset_as_dict,
features=datasets.Features(
{
"image": datasets.Image(),
"label": feature,
}
),
)
new_train_dataset = Dataset.from_dict(
new_train_dataset_as_dict,
features=datasets.Features(
{
"image": datasets.Image(),
"label": feature,
}
),
)
if split == "train":
dataset = DatasetDict({"train": new_train_dataset})
elif split == "test":
dataset = DatasetDict({"validation": new_test_dataset})
else:
dataset = DatasetDict(
{"train": new_train_dataset, "validation": new_test_dataset}
)
print(dataset)
dataset.save_to_disk(
f"/projects/copenlu/data/nadav/Datasets/pixel_glue_{task}_low_noise/dataset"
)
dataset.push_to_hub(
f"pixel_glue_{task}_low_noise", token="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"
)
if __name__ == "__main__":
task_id, split = sys.argv[1:]
main(task_id, split)