forked from openvinotoolkit/model_server
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgrpc_serving_client.py
170 lines (151 loc) · 8.75 KB
/
grpc_serving_client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#
# Copyright (c) 2018-2020 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import grpc
import numpy as np
from tensorflow import make_tensor_proto, make_ndarray
import classes
import datetime
import argparse
from tensorflow_serving.apis import predict_pb2
from tensorflow_serving.apis import prediction_service_pb2_grpc
from client_utils import print_statistics, prepare_certs
parser = argparse.ArgumentParser(description='Sends requests via TFS gRPC API using images in numpy format. '
'It displays performance statistics and optionally the model accuracy')
parser.add_argument('--images_numpy_path', required=True, help='numpy in shape [n,w,h,c] or [n,c,h,w]')
parser.add_argument('--labels_numpy_path', required=False, help='numpy in shape [n,1] - can be used to check model accuracy')
parser.add_argument('--grpc_address',required=False, default='localhost', help='Specify url to grpc service. default:localhost')
parser.add_argument('--grpc_port',required=False, default=9000, help='Specify port to grpc service. default: 9000')
parser.add_argument('--input_name',required=False, default='input', help='Specify input tensor name. default: input')
parser.add_argument('--output_name',required=False, default='resnet_v1_50/predictions/Reshape_1',
help='Specify output name. default: resnet_v1_50/predictions/Reshape_1')
parser.add_argument('--transpose_input', choices=["False", "True"], default="True",
help='Set to False to skip NHWC>NCHW or NCHW>NHWC input transposing. default: True',
dest="transpose_input")
parser.add_argument('--transpose_method', choices=["nchw2nhwc","nhwc2nchw"], default="nhwc2nchw",
help="How the input transposition should be executed: nhwc2nchw or nchw2nhwc",
dest="transpose_method")
parser.add_argument('--iterations', default=0,
help='Number of requests iterations, as default use number of images in numpy memmap. default: 0 (consume all frames)',
dest='iterations', type=int)
# If input numpy file has too few frames according to the value of iterations and the batch size, it will be
# duplicated to match requested number of frames
parser.add_argument('--batchsize', default=1,
help='Number of images in a single request. default: 1',
dest='batchsize')
parser.add_argument('--model_name', default='resnet', help='Define model name, must be same as is in service. default: resnet',
dest='model_name')
parser.add_argument('--pipeline_name', default='', help='Define pipeline name, must be same as is in service',
dest='pipeline_name')
parser.add_argument('--tls', default=False, action='store_true', help='use TLS communication with gRPC endpoint')
parser.add_argument('--server_cert', required=False, help='Path to server certificate')
parser.add_argument('--client_cert', required=False, help='Path to client certificate')
parser.add_argument('--client_key', required=False, help='Path to client key')
args = vars(parser.parse_args())
address = "{}:{}".format(args['grpc_address'],args['grpc_port'])
if args.get('tls'):
server_ca_cert, client_key, client_cert = prepare_certs(server_cert=args['server_cert'],
client_key=args['client_key'],
client_ca=args['client_cert'])
creds = grpc.ssl_channel_credentials(root_certificates=server_ca_cert,
private_key=client_key, certificate_chain=client_cert)
channel = grpc.secure_channel(address, creds)
else:
channel = grpc.insecure_channel(address)
stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)
processing_times = np.zeros((0),int)
# optional preprocessing depending on the model
imgs = np.load(args['images_numpy_path'], mmap_mode='r', allow_pickle=False)
imgs = imgs - np.min(imgs) # Normalization 0-255
imgs = imgs / np.ptp(imgs) * 255 # Normalization 0-255
#imgs = imgs[:,:,:,::-1] # RGB to BGR
print('Image data range:', np.amin(imgs), ':', np.amax(imgs))
# optional preprocessing depending on the model
if args.get('labels_numpy_path') is not None:
lbs = np.load(args['labels_numpy_path'], mmap_mode='r', allow_pickle=False)
matched_count = 0
total_executed = 0
batch_size = int(args.get('batchsize'))
while batch_size >= imgs.shape[0]:
imgs = np.append(imgs, imgs, axis=0)
if args.get('labels_numpy_path') is not None:
lbs = np.append(lbs, lbs, axis=0)
iterations = int((imgs.shape[0]//batch_size) if not (args.get('iterations') or args.get('iterations') != 0) else args.get('iterations'))
print('Start processing:')
print('\tModel name: {}'.format(args.get('model_name')))
print('\tIterations: {}'.format(iterations))
print('\tImages numpy path: {}'.format(args.get('images_numpy_path')))
if args.get('transpose_input') == "True":
if args.get('transpose_method') == "nhwc2nchw":
imgs = imgs.transpose((0,3,1,2))
if args.get('transpose_method') == "nchw2nhwc":
imgs = imgs.transpose((0,2,3,1))
print('\tImages in shape: {}\n'.format(imgs.shape))
iteration = 0
is_pipeline_request = bool(args.get('pipeline_name'))
while iteration <= iterations:
for x in range(0, imgs.shape[0] - batch_size + 1, batch_size):
iteration += 1
if iteration > iterations: break
request = predict_pb2.PredictRequest()
request.model_spec.name = args.get('pipeline_name') if is_pipeline_request else args.get('model_name')
img = imgs[x:(x + batch_size)]
if args.get('labels_numpy_path') is not None:
lb = lbs[x:(x + batch_size)]
request.inputs[args['input_name']].CopyFrom(make_tensor_proto(img, shape=(img.shape)))
start_time = datetime.datetime.now()
result = stub.Predict(request, 10.0) # result includes a dictionary with all model outputs
end_time = datetime.datetime.now()
if args['output_name'] not in result.outputs:
print("Invalid output name", args['output_name'])
print("Available outputs:")
for Y in result.outputs:
print(Y)
exit(1)
duration = (end_time - start_time).total_seconds() * 1000
processing_times = np.append(processing_times,np.array([int(duration)]))
output = make_ndarray(result.outputs[args['output_name']])
nu = np.array(output)
# for object classification models show imagenet class
print('Iteration {}; Processing time: {:.2f} ms; speed {:.2f} fps'.format(iteration,round(np.average(duration), 2),
round(1000 * batch_size / np.average(duration), 2)
))
# Comment out this section for non imagenet datasets
print("imagenet top results in a single batch:")
for i in range(nu.shape[0]):
if is_pipeline_request:
# shape (1,)
print("response shape", output.shape)
ma = nu[0] - 1 # indexes needs to be shifted left due to 1x1001 shape
else:
# shape (1,1000)
single_result = nu[[i],...]
offset = 0
if nu.shape[1] == 1001:
offset = 1
ma = np.argmax(single_result) - offset
mark_message = ""
if args.get('labels_numpy_path') is not None:
total_executed += 1
if ma == lb[i]:
matched_count += 1
mark_message = "; Correct match."
else:
mark_message = "; Incorrect match. Should be {} {}".format(lb[i], classes.imagenet_classes[lb[i]] )
print("\t",i, classes.imagenet_classes[ma],ma, mark_message)
# Comment out this section for non imagenet datasets
print_statistics(processing_times, batch_size)
if args.get('labels_numpy_path') is not None:
print('Classification accuracy: {:.2f}'.format(100*matched_count/total_executed))