Skip to content

Commit 3677dda

Browse files
authored
[DOCS] 23.0 to 23.1 link update for master (openvinotoolkit#19584)
* 2023.1 link fix * 2023.1 link fix * 2023.1 link fix * 2023.1 link fix * 2023.1 link fix
1 parent 2f782b2 commit 3677dda

File tree

102 files changed

+327
-330
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

102 files changed

+327
-330
lines changed

README.md

+14-15
Original file line numberDiff line numberDiff line change
@@ -68,24 +68,24 @@ The OpenVINO™ Runtime can infer models on different hardware devices. This sec
6868
<tbody>
6969
<tr>
7070
<td rowspan=2>CPU</td>
71-
<td> <a href="https://docs.openvino.ai/2023.0/openvino_docs_OV_UG_supported_plugins_CPU.html#doxid-openvino-docs-o-v-u-g-supported-plugins-c-p-u">Intel CPU</a></tb>
71+
<td> <a href="https://docs.openvino.ai/2023.1/openvino_docs_OV_UG_supported_plugins_CPU.html#doxid-openvino-docs-o-v-u-g-supported-plugins-c-p-u">Intel CPU</a></tb>
7272
<td><b><i><a href="./src/plugins/intel_cpu">openvino_intel_cpu_plugin</a></i></b></td>
7373
<td>Intel Xeon with Intel® Advanced Vector Extensions 2 (Intel® AVX2), Intel® Advanced Vector Extensions 512 (Intel® AVX-512), and AVX512_BF16, Intel Core Processors with Intel AVX2, Intel Atom Processors with Intel® Streaming SIMD Extensions (Intel® SSE)</td>
7474
</tr>
7575
<tr>
76-
<td> <a href="https://docs.openvino.ai/2023.0/openvino_docs_OV_UG_supported_plugins_CPU.html">ARM CPU</a></tb>
76+
<td> <a href="https://docs.openvino.ai/2023.1/openvino_docs_OV_UG_supported_plugins_CPU.html">ARM CPU</a></tb>
7777
<td><b><i><a href="https://github.com/openvinotoolkit/openvino_contrib/tree/master/modules/arm_plugin">openvino_arm_cpu_plugin</a></i></b></td>
7878
<td>Raspberry Pi™ 4 Model B, Apple® Mac mini with M1 chip, NVIDIA® Jetson Nano™, Android™ devices
7979
</tr>
8080
<tr>
8181
<td>GPU</td>
82-
<td><a href="https://docs.openvino.ai/2023.0/openvino_docs_OV_UG_supported_plugins_GPU.html#doxid-openvino-docs-o-v-u-g-supported-plugins-g-p-u">Intel GPU</a></td>
82+
<td><a href="https://docs.openvino.ai/2023.1/openvino_docs_OV_UG_supported_plugins_GPU.html#doxid-openvino-docs-o-v-u-g-supported-plugins-g-p-u">Intel GPU</a></td>
8383
<td><b><i><a href="./src/plugins/intel_gpu">openvino_intel_gpu_plugin</a></i></b></td>
8484
<td>Intel Processor Graphics, including Intel HD Graphics and Intel Iris Graphics</td>
8585
</tr>
8686
<tr>
8787
<td>GNA</td>
88-
<td><a href="https://docs.openvino.ai/2023.0/openvino_docs_OV_UG_supported_plugins_GNA.html#doxid-openvino-docs-o-v-u-g-supported-plugins-g-n-a">Intel GNA</a></td>
88+
<td><a href="https://docs.openvino.ai/2023.1/openvino_docs_OV_UG_supported_plugins_GNA.html#doxid-openvino-docs-o-v-u-g-supported-plugins-g-n-a">Intel GNA</a></td>
8989
<td><b><i><a href="./src/plugins/intel_gna">openvino_intel_gna_plugin</a></i></b></td>
9090
<td>Intel Speech Enabling Developer Kit, Amazon Alexa* Premium Far-Field Developer Kit, Intel Pentium Silver J5005 Processor, Intel Pentium Silver N5000 Processor, Intel Celeron J4005 Processor, Intel Celeron J4105 Processor, Intel Celeron Processor N4100, Intel Celeron Processor N4000, Intel Core i3-8121U Processor, Intel Core i7-1065G7 Processor, Intel Core i7-1060G7 Processor, Intel Core i5-1035G4 Processor, Intel Core i5-1035G7 Processor, Intel Core i5-1035G1 Processor, Intel Core i5-1030G7 Processor, Intel Core i5-1030G4 Processor, Intel Core i3-1005G1 Processor, Intel Core i3-1000G1 Processor, Intel Core i3-1000G4 Processor</td>
9191
</tr>
@@ -103,22 +103,22 @@ OpenVINO™ Toolkit also contains several plugins which simplify loading models
103103
</thead>
104104
<tbody>
105105
<tr>
106-
<td><a href="https://docs.openvino.ai/2023.0/openvino_docs_IE_DG_supported_plugins_AUTO.html#doxid-openvino-docs-i-e-d-g-supported-plugins-a-u-t-o">Auto</a></td>
106+
<td><a href="https://docs.openvino.ai/2023.1/openvino_docs_OV_UG_supported_plugins_AUTO.html">Auto</a></td>
107107
<td><b><i><a href="./src/plugins/auto">openvino_auto_plugin</a></i></b></td>
108108
<td>Auto plugin enables selecting Intel device for inference automatically</td>
109109
</tr>
110110
<tr>
111-
<td><a href="https://docs.openvino.ai/2023.0/openvino_docs_OV_UG_Automatic_Batching.html">Auto Batch</a></td>
111+
<td><a href="https://docs.openvino.ai/2023.1/openvino_docs_OV_UG_Automatic_Batching.html">Auto Batch</a></td>
112112
<td><b><i><a href="./src/plugins/auto_batch">openvino_auto_batch_plugin</a></i></b></td>
113113
<td>Auto batch plugin performs on-the-fly automatic batching (i.e. grouping inference requests together) to improve device utilization, with no programming effort from the user</td>
114114
</tr>
115115
<tr>
116-
<td><a href="https://docs.openvino.ai/2023.0/openvino_docs_OV_UG_Hetero_execution.html#doxid-openvino-docs-o-v-u-g-hetero-execution">Hetero</a></td>
116+
<td><a href="https://docs.openvino.ai/2023.1/openvino_docs_OV_UG_Hetero_execution.html#doxid-openvino-docs-o-v-u-g-hetero-execution">Hetero</a></td>
117117
<td><b><i><a href="./src/plugins/hetero">openvino_hetero_plugin</a></i></b></td>
118118
<td>Heterogeneous execution enables automatic inference splitting between several devices</td>
119119
</tr>
120120
<tr>
121-
<td><a href="https://docs.openvino.ai/2023.0/openvino_docs_OV_UG_Running_on_multiple_devices.html#doxid-openvino-docs-o-v-u-g-running-on-multiple-devices">Multi</a></td>
121+
<td><a href="https://docs.openvino.ai/2023.1/openvino_docs_OV_UG_Running_on_multiple_devices.html#doxid-openvino-docs-o-v-u-g-running-on-multiple-devices">Multi</a></td>
122122
<td><b><i><a href="./src/plugins/auto">openvino_auto_plugin</a></i></b></td>
123123
<td>Multi plugin enables simultaneous inference of the same model on several devices in parallel</td>
124124
</tr>
@@ -155,10 +155,9 @@ The list of OpenVINO tutorials:
155155
## System requirements
156156

157157
The system requirements vary depending on platform and are available on dedicated pages:
158-
- [Linux](https://docs.openvino.ai/2023.0/openvino_docs_install_guides_installing_openvino_linux_header.html)
159-
- [Windows](https://docs.openvino.ai/2023.0/openvino_docs_install_guides_installing_openvino_windows_header.html)
160-
- [macOS](https://docs.openvino.ai/2023.0/openvino_docs_install_guides_installing_openvino_macos_header.html)
161-
- [Raspbian](https://docs.openvino.ai/2023.0/openvino_docs_install_guides_installing_openvino_raspbian.html)
158+
- [Linux](https://docs.openvino.ai/2023.1/openvino_docs_install_guides_installing_openvino_linux_header.html)
159+
- [Windows](https://docs.openvino.ai/2023.1/openvino_docs_install_guides_installing_openvino_windows_header.html)
160+
- [macOS](https://docs.openvino.ai/2023.1/openvino_docs_install_guides_installing_openvino_macos_header.html)
162161

163162
## How to build
164163

@@ -196,7 +195,7 @@ Report questions, issues and suggestions, using:
196195
\* Other names and brands may be claimed as the property of others.
197196

198197
[Open Model Zoo]:https://github.com/openvinotoolkit/open_model_zoo
199-
[OpenVINO™ Runtime]:https://docs.openvino.ai/2023.0/openvino_docs_OV_UG_OV_Runtime_User_Guide.html
200-
[Model Optimizer]:https://docs.openvino.ai/2023.0/openvino_docs_MO_DG_Deep_Learning_Model_Optimizer_DevGuide.html
201-
[Post-Training Optimization Tool]:https://docs.openvino.ai/2023.0/pot_introduction.html
198+
[OpenVINO™ Runtime]:https://docs.openvino.ai/2023.1/openvino_docs_OV_UG_OV_Runtime_User_Guide.html
199+
[Model Optimizer]:https://docs.openvino.ai/2023.1/openvino_docs_MO_DG_Deep_Learning_Model_Optimizer_DevGuide.html
200+
[Post-Training Optimization Tool]:https://docs.openvino.ai/2023.1/pot_introduction.html
202201
[Samples]:https://github.com/openvinotoolkit/openvino/tree/master/samples

docs/IE_PLUGIN_DG/Intro.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -94,7 +94,7 @@ Detailed Guides
9494
API References
9595
##############
9696

97-
* `OpenVINO Plugin API <https://docs.openvino.ai/2023.0/groupov_dev_api.html>`__
98-
* `OpenVINO Transformation API <https://docs.openvino.ai/2023.0/groupie_transformation_api.html>`__
97+
* `OpenVINO Plugin API <https://docs.openvino.ai/2023.1/groupov_dev_api.html>`__
98+
* `OpenVINO Transformation API <https://docs.openvino.ai/2023.1/groupie_transformation_api.html>`__
9999

100100
@endsphinxdirective

docs/IE_PLUGIN_DG/dev_api_references.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@
1515

1616
The guides below provides extra API references needed for OpenVINO plugin development:
1717

18-
* `OpenVINO Plugin API <https://docs.openvino.ai/2023.0/groupov_dev_api.html>`__
19-
* `OpenVINO Transformation API <https://docs.openvino.ai/2023.0/groupie_transformation_api.html>`__
18+
* `OpenVINO Plugin API <https://docs.openvino.ai/2023.1/groupov_dev_api.html>`__
19+
* `OpenVINO Transformation API <https://docs.openvino.ai/2023.1/groupie_transformation_api.html>`__
2020

2121
@endsphinxdirective

docs/MO_DG/prepare_model/convert_model/tf_specific/Convert_RetinaNet_From_Tensorflow.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@
1010
This tutorial explains how to convert a RetinaNet model to the Intermediate Representation (IR).
1111

1212
`Public RetinaNet model <https://github.com/fizyr/keras-retinanet>`__ does not contain pretrained TensorFlow weights.
13-
To convert this model to the TensorFlow format, follow the `Reproduce Keras to TensorFlow Conversion tutorial <https://docs.openvino.ai/2023.0/omz_models_model_retinanet_tf.html>`__.
13+
To convert this model to the TensorFlow format, follow the `Reproduce Keras to TensorFlow Conversion tutorial <https://docs.openvino.ai/2023.1/omz_models_model_retinanet_tf.html>`__.
1414

1515
After converting the model to TensorFlow format, run the following command:
1616

docs/OV_Runtime_UG/integrate_with_your_application.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -437,9 +437,9 @@ To build your project using CMake with the default build tools currently availab
437437
Additional Resources
438438
####################
439439

440-
* See the :doc:`OpenVINO Samples <openvino_docs_OV_UG_Samples_Overview>` page or the `Open Model Zoo Demos <https://docs.openvino.ai/2023.0/omz_demos.html>`__ page for specific examples of how OpenVINO pipelines are implemented for applications like image classification, text prediction, and many others.
440+
* See the :doc:`OpenVINO Samples <openvino_docs_OV_UG_Samples_Overview>` page or the `Open Model Zoo Demos <https://docs.openvino.ai/2023.1/omz_demos.html>`__ page for specific examples of how OpenVINO pipelines are implemented for applications like image classification, text prediction, and many others.
441441
* :doc:`OpenVINO™ Runtime Preprocessing <openvino_docs_OV_UG_Preprocessing_Overview>`
442442
* :doc:`Using Encrypted Models with OpenVINO <openvino_docs_OV_UG_protecting_model_guide>`
443-
* `Open Model Zoo Demos <https://docs.openvino.ai/2023.0/omz_demos.html>`__
443+
* `Open Model Zoo Demos <https://docs.openvino.ai/2023.1/omz_demos.html>`__
444444

445445
@endsphinxdirective

docs/OV_Runtime_UG/ov_dynamic_shapes.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -62,7 +62,7 @@ Model input dimensions can be specified as dynamic using the model.reshape metho
6262

6363
Some models may already have dynamic shapes out of the box and do not require additional configuration. This can either be because it was generated with dynamic shapes from the source framework, or because it was converted with Model Conversion API to use dynamic shapes. For more information, see the Dynamic Dimensions “Out of the Box” section.
6464

65-
The examples below show how to set dynamic dimensions with a model that has a static ``[1, 3, 224, 224]`` input shape (such as `mobilenet-v2 <https://docs.openvino.ai/2023.0/omz_models_model_mobilenet_v2.html>`__). The first example shows how to change the first dimension (batch size) to be dynamic. In the second example, the third and fourth dimensions (height and width) are set as dynamic.
65+
The examples below show how to set dynamic dimensions with a model that has a static ``[1, 3, 224, 224]`` input shape (such as `mobilenet-v2 <https://docs.openvino.ai/2023.1/omz_models_model_mobilenet_v2.html>`__). The first example shows how to change the first dimension (batch size) to be dynamic. In the second example, the third and fourth dimensions (height and width) are set as dynamic.
6666

6767
.. tab-set::
6868

@@ -175,7 +175,7 @@ The lower and/or upper bounds of a dynamic dimension can also be specified. They
175175
.. tab-item:: C
176176
:sync: c
177177
178-
The dimension bounds can be coded as arguments for `ov_dimension <https://docs.openvino.ai/2023.0/structov_dimension.html#doxid-structov-dimension>`__, as shown in these examples:
178+
The dimension bounds can be coded as arguments for `ov_dimension <https://docs.openvino.ai/2023.1/structov_dimension.html#doxid-structov-dimension>`__, as shown in these examples:
179179

180180
.. doxygensnippet:: docs/snippets/ov_dynamic_shapes.c
181181
:language: cpp

docs/OV_Runtime_UG/preprocessing_usecase_save.md

+3-3
Original file line numberDiff line numberDiff line change
@@ -110,8 +110,8 @@ Additional Resources
110110
* :doc:`Layout API overview <openvino_docs_OV_UG_Layout_Overview>`
111111
* :doc:`Model Optimizer - Optimize Preprocessing Computation <openvino_docs_MO_DG_Additional_Optimization_Use_Cases>`
112112
* :doc:`Model Caching Overview <openvino_docs_OV_UG_Model_caching_overview>`
113-
* The `ov::preprocess::PrePostProcessor <https://docs.openvino.ai/2023.0/classov_1_1preprocess_1_1PrePostProcessor.html#doxid-classov-1-1preprocess-1-1-pre-post-processor>`__ C++ class documentation
114-
* The `ov::pass::Serialize <https://docs.openvino.ai/2023.0/classov_1_1pass_1_1Serialize.html#doxid-classov-1-1pass-1-1-serialize.html>`__ - pass to serialize model to XML/BIN
115-
* The `ov::set_batch <https://docs.openvino.ai/2023.0/namespaceov.html#doxid-namespaceov-1a3314e2ff91fcc9ffec05b1a77c37862b.html>`__ - update batch dimension for a given model
113+
* The `ov::preprocess::PrePostProcessor <https://docs.openvino.ai/2023.1/classov_1_1preprocess_1_1PrePostProcessor.html#doxid-classov-1-1preprocess-1-1-pre-post-processor>`__ C++ class documentation
114+
* The `ov::pass::Serialize <https://docs.openvino.ai/2023.1/classov_1_1pass_1_1Serialize.html#doxid-classov-1-1pass-1-1-serialize.html>`__ - pass to serialize model to XML/BIN
115+
* The `ov::set_batch <https://docs.openvino.ai/2023.1/namespaceov.html#doxid-namespaceov-1a3314e2ff91fcc9ffec05b1a77c37862b.html>`__ - update batch dimension for a given model
116116

117117
@endsphinxdirective

docs/benchmarks/performance_benchmarks.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,7 @@
1313

1414
openvino_docs_performance_benchmarks_faq
1515
OpenVINO Accuracy <openvino_docs_performance_int8_vs_fp32>
16-
Performance Data Spreadsheet (download xlsx) <https://docs.openvino.ai/2023.0/_static/benchmarks_files/OV-2023.0-Performance-Data.xlsx>
16+
Performance Data Spreadsheet (download xlsx) <https://docs.openvino.ai/2023.1/_static/benchmarks_files/OV-2023.0-Performance-Data.xlsx>
1717
openvino_docs_MO_DG_Getting_Performance_Numbers
1818

1919

docs/dev/cmake_options_for_custom_compilation.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -189,8 +189,8 @@ In this case OpenVINO CMake scripts take `TBBROOT` environment variable into acc
189189
[pugixml]:https://pugixml.org/
190190
[ONNX]:https://onnx.ai/
191191
[protobuf]:https://github.com/protocolbuffers/protobuf
192-
[deployment manager]:https://docs.openvino.ai/2023.0/openvino_docs_install_guides_deployment_manager_tool.html
193-
[OpenVINO Runtime Introduction]:https://docs.openvino.ai/2023.0/openvino_docs_OV_UG_Integrate_OV_with_your_application.html
192+
[deployment manager]:https://docs.openvino.ai/2023.1/openvino_docs_install_guides_deployment_manager_tool.html
193+
[OpenVINO Runtime Introduction]:https://docs.openvino.ai/2023.1/openvino_docs_OV_UG_Integrate_OV_with_your_application.html
194194
[PDPD]:https://github.com/PaddlePaddle/Paddle
195195
[TensorFlow]:https://www.tensorflow.org/
196196
[TensorFlow Lite]:https://www.tensorflow.org/lite

docs/dev/debug_capabilities.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22

33
OpenVINO components provides different debug capabilities, to get more information please read:
44

5-
* [OpenVINO Model Debug Capabilities](https://docs.openvino.ai/2023.0/openvino_docs_OV_UG_Model_Representation.html#model-debug-capabilities)
5+
* [OpenVINO Model Debug Capabilities](https://docs.openvino.ai/2023.1/openvino_docs_OV_UG_Model_Representation.html#model-debug-capabilities)
66
* [OpenVINO Pass Manager Debug Capabilities](#todo)
77

88
## See also

docs/gapi/face_beautification.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -24,8 +24,8 @@ This sample requires:
2424
* OpenCV 4.2 or higher built with `Intel® Distribution of OpenVINO™ Toolkit <https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html>`__ (building with `Intel® TBB <https://www.threadingbuildingblocks.org/intel-tbb-tutorial>`__ is a plus)
2525
* The following pre-trained models from the :doc:`Open Model Zoo <omz_models_group_intel>`
2626

27-
* `face-detection-adas-0001 <https://docs.openvino.ai/2023.0/omz_models_model_face_detection_adas_0001.html#doxid-omz-models-model-face-detection-adas-0001>`__
28-
* `facial-landmarks-35-adas-0002 <https://docs.openvino.ai/2023.0/omz_models_model_facial_landmarks_35_adas_0002.html#doxid-omz-models-model-facial-landmarks-35-adas-0002>`__
27+
* `face-detection-adas-0001 <https://docs.openvino.ai/2023.1/omz_models_model_face_detection_adas_0001.html#doxid-omz-models-model-face-detection-adas-0001>`__
28+
* `facial-landmarks-35-adas-0002 <https://docs.openvino.ai/2023.1/omz_models_model_facial_landmarks_35_adas_0002.html#doxid-omz-models-model-facial-landmarks-35-adas-0002>`__
2929

3030
To download the models from the Open Model Zoo, use the :doc:`Model Downloader <omz_tools_downloader>` tool.
3131

docs/gapi/gapi_face_analytics_pipeline.md

+4-4
Original file line numberDiff line numberDiff line change
@@ -24,9 +24,9 @@ This sample requires:
2424
* OpenCV 4.2 or higher built with `Intel® Distribution of OpenVINO™ Toolkit <https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html>`__ (building with `Intel® TBB <https://www.threadingbuildingblocks.org/intel-tbb-tutorial>`__ is a plus)
2525
* The following pre-trained models from the :doc:`Open Model Zoo <omz_models_group_intel>`
2626

27-
* `face-detection-adas-0001 <https://docs.openvino.ai/2023.0/omz_models_model_face_detection_adas_0001.html#doxid-omz-models-model-face-detection-adas-0001>`__
28-
* `age-gender-recognition-retail-0013 <https://docs.openvino.ai/2023.0/omz_models_model_age_gender_recognition_retail_0013.html#doxid-omz-models-model-age-gender-recognition-retail-0013>`__
29-
* `emotions-recognition-retail-0003 <https://docs.openvino.ai/2023.0/omz_models_model_emotions_recognition_retail_0003.html#doxid-omz-models-model-emotions-recognition-retail-0003>`__
27+
* `face-detection-adas-0001 <https://docs.openvino.ai/2023.1/omz_models_model_face_detection_adas_0001.html#doxid-omz-models-model-face-detection-adas-0001>`__
28+
* `age-gender-recognition-retail-0013 <https://docs.openvino.ai/2023.1/omz_models_model_age_gender_recognition_retail_0013.html#doxid-omz-models-model-age-gender-recognition-retail-0013>`__
29+
* `emotions-recognition-retail-0003 <https://docs.openvino.ai/2023.1/omz_models_model_emotions_recognition_retail_0003.html#doxid-omz-models-model-emotions-recognition-retail-0003>`__
3030

3131
To download the models from the Open Model Zoo, use the :doc:`Model Downloader <omz_tools_downloader>` tool.
3232

@@ -42,7 +42,7 @@ Starting with version 4.2, OpenCV offers a solution to this problem. OpenCV G-AP
4242
Pipeline Overview
4343
#################
4444

45-
Our sample application is based on `Interactive Face Detection <https://docs.openvino.ai/2023.0/omz_demos_interactive_face_detection_demo_cpp.html#doxid-omz-demos-interactive-face-detection-demo-cpp>`__ demo from Open Model Zoo. A simplified pipeline consists of the following steps:
45+
Our sample application is based on `Interactive Face Detection <https://docs.openvino.ai/2023.1/omz_demos_interactive_face_detection_demo_cpp.html#doxid-omz-demos-interactive-face-detection-demo-cpp>`__ demo from Open Model Zoo. A simplified pipeline consists of the following steps:
4646

4747
1. Image acquisition and decode
4848
2. Detection with preprocessing

0 commit comments

Comments
 (0)