forked from tinygrad/tinygrad
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrnnt.py
202 lines (161 loc) · 7.86 KB
/
rnnt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
from tinygrad.tensor import Tensor
from tinygrad.jit import TinyJit
from tinygrad.nn import Linear, Embedding
import numpy as np
from extra.utils import download_file
from pathlib import Path
class RNNT:
def __init__(self, input_features=240, vocab_size=29, enc_hidden_size=1024, pred_hidden_size=320, joint_hidden_size=512, pre_enc_layers=2, post_enc_layers=3, pred_layers=2, stack_time_factor=2, dropout=0.32):
self.encoder = Encoder(input_features, enc_hidden_size, pre_enc_layers, post_enc_layers, stack_time_factor, dropout)
self.prediction = Prediction(vocab_size, pred_hidden_size, pred_layers, dropout)
self.joint = Joint(vocab_size, pred_hidden_size, enc_hidden_size, joint_hidden_size, dropout)
@TinyJit
def __call__(self, x, y, hc=None):
f, _ = self.encoder(x, None)
g, _ = self.prediction(y, hc, Tensor.ones(1, requires_grad=False))
out = self.joint(f, g)
return out.realize()
def decode(self, x, x_lens):
logits, logit_lens = self.encoder(x, x_lens)
outputs = []
for b in range(logits.shape[0]):
inseq = logits[b, :, :].unsqueeze(1)
logit_len = logit_lens[b]
seq = self._greedy_decode(inseq, int(np.ceil(logit_len.numpy()).item()))
outputs.append(seq)
return outputs
def _greedy_decode(self, logits, logit_len):
hc = Tensor.zeros(self.prediction.rnn.layers, 2, self.prediction.hidden_size, requires_grad=False)
labels = []
label = Tensor.zeros(1, 1, requires_grad=False)
mask = Tensor.zeros(1, requires_grad=False)
for time_idx in range(logit_len):
logit = logits[time_idx, :, :].unsqueeze(0)
not_blank = True
added = 0
while not_blank and added < 30:
if len(labels) > 0:
mask = (mask + 1).clip(0, 1)
label = Tensor([[labels[-1] if labels[-1] <= 28 else labels[-1] - 1]], requires_grad=False) + 1 - 1
jhc = self._pred_joint(Tensor(logit.numpy()), label, hc, mask)
k = np.argmax(jhc[0, 0, :29].numpy(), axis=0)
not_blank = k != 28
if not_blank:
labels.append(k)
hc = jhc[:, :, 29:] + 1 - 1
added += 1
return labels
@TinyJit
def _pred_joint(self, logit, label, hc, mask):
g, hc = self.prediction(label, hc, mask)
j = self.joint(logit, g)[0]
j = j.pad(((0, 1), (0, 1), (0, 0)))
out = j.cat(hc, dim=2)
return out.realize()
def load_from_pretrained(self):
fn = Path(__file__).parent.parent / "weights/rnnt.pt"
download_file("https://zenodo.org/record/3662521/files/DistributedDataParallel_1576581068.9962234-epoch-100.pt?download=1", fn)
import torch
with open(fn, "rb") as f:
state_dict = torch.load(f, map_location="cpu")["state_dict"]
# encoder
for i in range(2):
self.encoder.pre_rnn.cells[i].weights_ih.assign(state_dict[f"encoder.pre_rnn.lstm.weight_ih_l{i}"].numpy())
self.encoder.pre_rnn.cells[i].weights_hh.assign(state_dict[f"encoder.pre_rnn.lstm.weight_hh_l{i}"].numpy())
self.encoder.pre_rnn.cells[i].bias_ih.assign(state_dict[f"encoder.pre_rnn.lstm.bias_ih_l{i}"].numpy())
self.encoder.pre_rnn.cells[i].bias_hh.assign(state_dict[f"encoder.pre_rnn.lstm.bias_hh_l{i}"].numpy())
for i in range(3):
self.encoder.post_rnn.cells[i].weights_ih.assign(state_dict[f"encoder.post_rnn.lstm.weight_ih_l{i}"].numpy())
self.encoder.post_rnn.cells[i].weights_hh.assign(state_dict[f"encoder.post_rnn.lstm.weight_hh_l{i}"].numpy())
self.encoder.post_rnn.cells[i].bias_ih.assign(state_dict[f"encoder.post_rnn.lstm.bias_ih_l{i}"].numpy())
self.encoder.post_rnn.cells[i].bias_hh.assign(state_dict[f"encoder.post_rnn.lstm.bias_hh_l{i}"].numpy())
# prediction
self.prediction.emb.weight.assign(state_dict["prediction.embed.weight"].numpy())
for i in range(2):
self.prediction.rnn.cells[i].weights_ih.assign(state_dict[f"prediction.dec_rnn.lstm.weight_ih_l{i}"].numpy())
self.prediction.rnn.cells[i].weights_hh.assign(state_dict[f"prediction.dec_rnn.lstm.weight_hh_l{i}"].numpy())
self.prediction.rnn.cells[i].bias_ih.assign(state_dict[f"prediction.dec_rnn.lstm.bias_ih_l{i}"].numpy())
self.prediction.rnn.cells[i].bias_hh.assign(state_dict[f"prediction.dec_rnn.lstm.bias_hh_l{i}"].numpy())
# joint
self.joint.l1.weight.assign(state_dict["joint_net.0.weight"].numpy())
self.joint.l1.bias.assign(state_dict["joint_net.0.bias"].numpy())
self.joint.l2.weight.assign(state_dict["joint_net.3.weight"].numpy())
self.joint.l2.bias.assign(state_dict["joint_net.3.bias"].numpy())
class LSTMCell:
def __init__(self, input_size, hidden_size, dropout):
self.dropout = dropout
self.weights_ih = Tensor.uniform(hidden_size * 4, input_size)
self.bias_ih = Tensor.uniform(hidden_size * 4)
self.weights_hh = Tensor.uniform(hidden_size * 4, hidden_size)
self.bias_hh = Tensor.uniform(hidden_size * 4)
def __call__(self, x, hc):
gates = x.linear(self.weights_ih.T, self.bias_ih) + hc[:x.shape[0]].linear(self.weights_hh.T, self.bias_hh)
i, f, g, o = gates.chunk(4, 1)
i, f, g, o = i.sigmoid(), f.sigmoid(), g.tanh(), o.sigmoid()
c = (f * hc[x.shape[0]:]) + (i * g)
h = (o * c.tanh()).dropout(self.dropout)
return Tensor.cat(h, c).realize()
class LSTM:
def __init__(self, input_size, hidden_size, layers, dropout):
self.input_size = input_size
self.hidden_size = hidden_size
self.layers = layers
self.cells = [LSTMCell(input_size, hidden_size, dropout) if i == 0 else LSTMCell(hidden_size, hidden_size, dropout if i != layers - 1 else 0) for i in range(layers)]
def __call__(self, x, hc):
@TinyJit
def _do_step(x_, hc_):
return self.do_step(x_, hc_)
if hc is None:
hc = Tensor.zeros(self.layers, 2 * x.shape[1], self.hidden_size, requires_grad=False)
output = None
for t in range(x.shape[0]):
hc = _do_step(x[t] + 1 - 1, hc) # TODO: why do we need to do this?
if output is None:
output = hc[-1:, :x.shape[1]]
else:
output = output.cat(hc[-1:, :x.shape[1]], dim=0).realize()
return output, hc
def do_step(self, x, hc):
new_hc = [x]
for i, cell in enumerate(self.cells):
new_hc.append(cell(new_hc[i][:x.shape[0]], hc[i]))
return Tensor.stack(new_hc[1:]).realize()
class StackTime:
def __init__(self, factor):
self.factor = factor
def __call__(self, x, x_lens):
x = x.pad(((0, (-x.shape[0]) % self.factor), (0, 0), (0, 0)))
x = x.reshape(x.shape[0] // self.factor, x.shape[1], x.shape[2] * self.factor)
return x, x_lens / self.factor if x_lens is not None else None
class Encoder:
def __init__(self, input_size, hidden_size, pre_layers, post_layers, stack_time_factor, dropout):
self.pre_rnn = LSTM(input_size, hidden_size, pre_layers, dropout)
self.stack_time = StackTime(stack_time_factor)
self.post_rnn = LSTM(stack_time_factor * hidden_size, hidden_size, post_layers, dropout)
def __call__(self, x, x_lens):
x, _ = self.pre_rnn(x, None)
x, x_lens = self.stack_time(x, x_lens)
x, _ = self.post_rnn(x, None)
return x.transpose(0, 1), x_lens
class Prediction:
def __init__(self, vocab_size, hidden_size, layers, dropout):
self.hidden_size = hidden_size
self.emb = Embedding(vocab_size - 1, hidden_size)
self.rnn = LSTM(hidden_size, hidden_size, layers, dropout)
def __call__(self, x, hc, m):
emb = self.emb(x) * m
x_, hc = self.rnn(emb.transpose(0, 1), hc)
return x_.transpose(0, 1), hc
class Joint:
def __init__(self, vocab_size, pred_hidden_size, enc_hidden_size, joint_hidden_size, dropout):
self.dropout = dropout
self.l1 = Linear(pred_hidden_size + enc_hidden_size, joint_hidden_size)
self.l2 = Linear(joint_hidden_size, vocab_size)
def __call__(self, f, g):
(_, T, H), (B, U, H2) = f.shape, g.shape
f = f.unsqueeze(2).expand(B, T, U, H)
g = g.unsqueeze(1).expand(B, T, U, H2)
inp = f.cat(g, dim=3)
t = self.l1(inp).relu()
t = t.dropout(self.dropout)
return self.l2(t)